
CSCI 3366 September 28, 2005

Slide 1

Administrivia

• OpenMP compiler installed on publicly available multiprocessor machines
(SnowWhite, Dione01, Dione02). Details of use linked from “Sample
programs” and “Useful links” pages.

(It turns out that there are, or have been, several efforts to develop an
open-source OpenMP compiler. None quite production-quality yet, at least for
FC4 systems. I installed the one that seems to work best.)

• “Useful links” Web page has links to MPI and OpenMP sites. Go there to find
complete documentation (standard/specification).

• Please do not reboot the machines in HAS 340! People use these remotely,
and you may cause someone’s program to crash. If you think a reboot is
needed, ask a faculty member.

(If the machines seem to be very slow, odds are it’s a background program
running. Try another machine.)

Slide 2

Multithreaded Programming with OpenMP — Review

• Basic idea — fork/join programming model, all threads share memory.

• Can duplicate code in all threads (parallel directive), split a loop among
threads (parallel for), have different threads do different things
(parallel sections).

More details in specification — can combine these in various ways.

Various ways to assign loop iterations to threads — later.



CSCI 3366 September 28, 2005

Slide 3

Variables in OpenMP

• Most variables are shared by default; exceptions are variables local to a block
within a parallel region.

• Some things, though, aren’t — variables within a statement block, stack
(local) variables in subprograms called from parallel region.

• To give each thread a separate copy — private clause.
firstprivate and lastprivate can be used to start/end with
shared value.

• To create a partial result in each thread and then combine (“reduce”) —
reduction clause. Operations include sum, product, and/or. No max or
min in C/C++.

Slide 4

Library Functions

• omp get num threads, omp set num threads,
omp get thread num — as in examples and appendix.

• omp get wtime — as in examples and appendix.

• Functions to do locking — later.

• Functions to do other things — in specification.



CSCI 3366 September 28, 2005

Slide 5

Synchronization Constructs

• critical — only one thread at a time executes this block of code.
(Example — synch-2.c on sample programs page.)

• barrier — threads wait here until all have arrived. Implicit barrier at end of
parallel region.

• single — only one thread executes this block.

• Several others — atomic, flush, ordered, master. More about
them in the specification.

Slide 6

Locks

• omp lock t — declares a lock variable.

• omp init lock, omp destroy lock — create and destroy.

• omp set lock — acquire lock (wait if necessary).

• omp unset lock — release lock.

• Other functions described in specification.

• Example — synch-3.c on sample programs page.



CSCI 3366 September 28, 2005

Slide 7

Assigning Work to Threads — schedule clause

• static (with optional chunk size) — divide iterations into fixed-size blocks,
distribute evenly among threads.

• dynamic (with optional chunk size) — queue of iterations, threads grab
blocks of iterations until all done.

• guided (with optional chunk size) — like dynamic, but with decreasing
blocks of iterations.

• runtime — get from OMP SCHEDULE environment variable.

Slide 8

Sidebar — Environment Variables (in bash)

• To set environment variable FOO for the rest of the session:

export FOO=fooval

(To set every time you log in, put in .bash profile.)

• To run bar with a value for FOO:

FOO=fooval bar



CSCI 3366 September 28, 2005

Slide 9

Numerical Integration, Revisited

• Recall numerical integration program from a couple of classes ago. Let’s try
parallelizing with OpenMP.

• One approach — use parallel region to create an SPMD program,
conceptually identical to MPI program except for details of
computing/combining partial sums. Look at
code . . . (num-int-par-spmd-1.c on sample programs page).

• Performance is terrible, though, and there are other problems (see minute
essay). Other approaches next time.

Slide 10

Minute Essay

• We ran num-int-par-spmd-1 on SnowWhite with varying numbers of
threads. It always printed a value of 1 for nthreads, no matter how many
threads were being used.

– Why?

– Could this program crash? (It did for me on another machine —
segmentation fault — when run with more than one thread.)



CSCI 3366 September 28, 2005

Slide 11

Minute Essay Answer

• At the time we call omp get num threads, there is only one thread.
(Only later are there more.)

• Something bad could easily happen if we run the program with more than one
thread: We declare the array partsum with one element, but with more
than one thread we access elements with indices greater than zero.


