CSCI 3366 October 17, 2005

Administrivia

e (None?)

Slide 1

(A Few Words About Design Patterns)

e |dea originated with architect Christopher Alexander (first book 1977). Briefly
— look for problems that have to be solved over and over, and try to come up
with “expert” solution, write it in a form accessible to others. Usually this
means adopting “pattern format” to use for all patterns. Characteristics of a
good pattern:

Slide 2 — Neat balancing of competing “forces” (tradeoffs).

— Name either tells you what it's about, or is a good addition to vocabulary.
— “Aha!” aspect.

e First used in CS in OOD/OOP, about 1987. Really started to take off in OO
community with “Gang of Four” book (Gamma, Helms, Johnson, and
Vlissides; 1995). Now can find people writing patterns in many, many areas.

e To give you the idea — look at some simple patterns (links on course “Useful

links” page).

CSCI 3366 October 17, 2005

~N

“A Pattern Language for Parallel Programming”?

e Goal of our book (and preceding work) — apply this idea in parallel

computing.

o We started out looking for patterns representing high-level structures for
parallel programs, thinking there might be a dozen of them.

Slide 3 e At some point we realized we also wanted to talk about how you get from the
original problem to one of these structures — i.e., how do expert parallel

programmers think about how to decompose a problem, etc.? and also about
commonly-occurring data structures and program structures, and how to map

high-level designs/structures into real programming environments.

e Eventually — four-layer “pattern language”. (Notice that “pattern language”
connotes common vocabulary more than grammatical structure. Not a
programming language!)

Overall Organization of Our Pattern Language

e Four “design spaces” corresponding to phases in design.

— Finding Concurrency — how to decompose problems, analyze
decomposition.

— Algorithm Structure — high-level program structures.
Slide 4 — Supporting Structure — program structures, data structures.
— Implementation Mechanisms — generic discussion of programming

environment “building blocks”.

e |dea is that you start at the top, work your way down, possibly with some
backtracking.

CSCI 3366 October 17, 2005

Finding Concurrency — Preview

o Decomposition patterns (Task Decomposition, Data Decomposition): Break
problem into tasks that maybe can execute concurrently.

e Dependency analysis patterns (Group Tasks, Order Tasks, Data Sharing):

Organize tasks into groups, analyze dependencies among them.

Slide 5 e Design Evaluation: Review what you have so far, possibly backtrack.

Algorithm Structures — Preview

® Task Parallelism — decompose problem into lots of tasks, independent or
nearly so. Example: numerical integration.

e Divide and Conquer — decompose recursively as in divide-and-conquer

algorithms. Examples: quicksort, mergesort.

Slide 6 o Geometric Decomposition — decompose based on data (by rows, by

columns, etc.). Example: Mesh-based computation.

® Recursive Data — rethink computation to expose unexpected concurrency.

Ignore for now.
® Pipeline — decompose based on assembly-line analogy.

e Event-Based Coordination — decompose problem into entities interacting

asynchronously.

CSCI 3366 October 17, 2005

Supporting Structures — Preview

e Program structure patterns:
— SPMD (Single Program, Multiple Data) — “like an MPI program”.
— Loop Parallelism — “like an OpenMP program”.
— Master/Worker — like the name suggests.

Slide 7 — Fork/Join — when none of the others fits.

e Data structure patterns:
— Shared Data — generic advice for dealing with data dependencies.
— Shared Queue — example of applying Shared Data).
— Distributed Array.

4)

e Have you heard of design patterns before? worked with them / studied them?
(e.g., in Dr. Lewis’s OOP seminar class?)

e Can you think of an example of something that would make a good pattern,
but hasn’t (as far as you know) been written up as one? (It doesn’t have to be
Slide 8 in computer science.)

