Administrivia

- Today, two examples we can use in the next few classes.

Slide 1

Example - Molecular Dynamics

- Goal is to simulate what happens to large molecule. Of interest, e.g., in modeling how a drug interacts with a protein.
- Approach is to treat molecule as a collection of balls (atoms) connected by springs (chemical bonds). Then do "standard time-stepping" - divide time into discrete steps, and at each step use classical mechanics to figure out new positions for atoms based on current positions and forces among them. In more details ...

Molecular Dynamics - Computation

- At each time step:
- Compute forces (vibrational and rotational) on atoms caused by chemical bonds between them. Short-range interaction, so not too much computation here.

Slide 3

- Compute forces on atoms caused by their electrical charges. Potentially must consider all pairs of atoms, so lots of computation here.
- Use forces to update atoms' positions and velocities.
- Compute other physical properties of the system - e.g., energies.
- To reduce the computational load, can limit computation of electrical-charge-induced forces to atoms that are "close". To do this, calculate for each atom a list of "neighbors". If time steps are short, atoms don't move much, and we don't have to do this every step.

Molecular Dynamics Pseudocode

Int const N // number of atoms
Array of Real : : atoms (3,N) //3D coordinates
Array of Real : : velocities (3,N) //velocity vector
Array of Real : : forces $(3, N) / / f o r c e ~ i n ~ e a c h ~ d i m e n s i o n ~$
Array of List : : neighbors(N) //atoms in cutoff volume
Slide 4

```
loop over time steps
    vibrational_forces (N, atoms, forces)
    rotational_forces (N, atoms, forces)
    neighbor_list (N, atoms, neighbors)
    non_bonded_forces (N, atoms, neighbors, forces)
    update_atom_positions_and_velocities
        (N, atoms, velocities, forces)
    physical_properties ( ... Lots of stuff ... )
end loop
```


Pseudocode for Non-Bonded Force Computation

function non_bonded_forces (N, Atoms, neighbors, Forces) Int const $\mathrm{N} / /$ number of atoms
Array of Real :: atoms $(3, N) / / 3 D$ coordinates

Array of List :: neighbors(N) //atoms in cutoff volume
Real :: forceX, forceY, forceZ
loop [i] over atoms
loop [j] over neighbors(i)
Slide 5 forceX $=$ non_bond_force(atoms(1,i), atoms(1,j)) forceY = non_bond_force(atoms(2,i), atoms(2,j)) forceZ = non_bond_force(atoms(3,i), atoms (3,j) force(1,i) += forceX; force(1,j) -= forceX; force($2, i$) += forceY; force $(2, j)$-= forceY; force $(3, i)+=$ forceZ; \quad force $(3, j)$-= forceZ;
end loop [j]
end loop [i]
end function non_bonded_forces

Example - Heat Diffusion

- A simple example, representative of a big class of scientific-computing applications - "heat distribution problem".
- Goal is to simulate what happens when two ends of a pipe are put in contact with things at different (constant) temperatures - pipe conducts heat, its temperature changes over time, eventually converging on a smooth gradient.
- Can model mathematically how temperature in pipe changes over time using partial differential equations.
- Can approximate solution by "discretizing" - spatially and with regard to time.

Minute Essay

- For each of these two problems, tell me a little about the strategy you think might work for parallelizing it. (We will talk about both problems in the next few classes.)

Slide 8

