
CSCI 3366 October 19, 2005

Slide 1

Administrivia

• Today, two examples we can use in the next few classes.

Slide 2

Example — Molecular Dynamics

• Goal is to simulate what happens to large molecule. Of interest, e.g., in
modeling how a drug interacts with a protein.

• Approach is to treat molecule as a collection of balls (atoms) connected by
springs (chemical bonds). Then do “standard time-stepping” — divide time
into discrete steps, and at each step use classical mechanics to figure out
new positions for atoms based on current positions and forces among them.

In more details . . .

CSCI 3366 October 19, 2005

Slide 3

Molecular Dynamics — Computation

• At each time step:

– Compute forces (vibrational and rotational) on atoms caused by chemical
bonds between them. Short-range interaction, so not too much
computation here.

– Compute forces on atoms caused by their electrical charges. Potentially
must consider all pairs of atoms, so lots of computation here.

– Use forces to update atoms’ positions and velocities.

– Compute other physical properties of the system — e.g., energies.

• To reduce the computational load, can limit computation of
electrical-charge-induced forces to atoms that are “close”. To do this,
calculate for each atom a list of “neighbors”. If time steps are short, atoms
don’t move much, and we don’t have to do this every step.

Slide 4

Molecular Dynamics Pseudocode

Int const N // number of atoms
Array of Real :: atoms (3,N) //3D coordinates
Array of Real :: velocities (3,N) //velocity vector
Array of Real :: forces (3,N) //force in each dimension
Array of List :: neighbors(N) //atoms in cutoff volume

loop over time steps
vibrational_forces (N, atoms, forces)
rotational_forces (N, atoms, forces)
neighbor_list (N, atoms, neighbors)
non_bonded_forces (N, atoms, neighbors, forces)
update_atom_positions_and_velocities

(N, atoms, velocities, forces)
physical_properties (... Lots of stuff ...)

end loop

CSCI 3366 October 19, 2005

Slide 5

Pseudocode for Non-Bonded Force Computation

function non_bonded_forces (N, Atoms, neighbors, Forces)
Int const N // number of atoms
Array of Real :: atoms (3,N) //3D coordinates
Array of Real :: forces (3,N) //force in each dimension
Array of List :: neighbors(N) //atoms in cutoff volume
Real :: forceX, forceY, forceZ

loop [i] over atoms
loop [j] over neighbors(i)

forceX = non_bond_force(atoms(1,i), atoms(1,j))
forceY = non_bond_force(atoms(2,i), atoms(2,j))
forceZ = non_bond_force(atoms(3,i), atoms(3,j))
force(1,i) += forceX; force(1,j) -= forceX;
force(2,i) += forceY; force(2,j) -= forceY;
force(3,i) += forceZ; force(3,j) -= forceZ;

end loop [j]
end loop [i]

end function non_bonded_forces

Slide 6

Example — Heat Diffusion

• A simple example, representative of a big class of scientific-computing
applications — “heat distribution problem”.

• Goal is to simulate what happens when two ends of a pipe are put in contact
with things at different (constant) temperatures — pipe conducts heat, its
temperature changes over time, eventually converging on a smooth gradient.

• Can model mathematically how temperature in pipe changes over time using
partial differential equations.

• Can approximate solution by “discretizing” — spatially and with regard to time.

CSCI 3366 October 19, 2005

Slide 7

Heat Diffusion Code

double *uk = malloc(sizeof(double) * NX);
double *ukp1 = malloc(sizeof(double) * NX);
double *temp;
double dx = 1.0/NX; double dt = 0.5*dx*dx;
double maxdiff, diff;

initialize(uk, ukp1);

for (int k = 0; (k < NSTEPS) && (maxdiff >= threshold); ++k) {

/* compute new values */
for (int i = 1; i < NX-1; ++i) {

ukp1[i]=uk[i]+ (dt/(dx*dx))*(uk[i+1]-2*uk[i]+uk[i-1]);
}

/* check for convergence */
maxdiff = 0.0;
for (int i = 1; i < NX-1; ++i) {

diff = fabs(uk[i] - ukp1[i]);
if (diff > maxdiff) maxdiff = diff;

}

/* "copy" ukp1 to uk by swapping pointers */
temp = ukp1; ukp1 = uk; uk = temp;

printValues(uk, k);
}

Slide 8

Minute Essay

• For each of these two problems, tell me a little about the strategy you think
might work for parallelizing it. (We will talk about both problems in the next
few classes.)

