
CSCI 3366 November 4, 2005

Slide 1

Administrivia

• Homework 3 due today. Okay to leave unresolved for now mathematical

issues (choice of seed, how to generate different streams in different

processes/threads). Goal is to resolve parallelization issues (dividing up work,

communicating/synchronizing properly).

Slide 2

Recap — Algorithm Structure Patterns

• If decomposition/analysis reveals organization in terms of tasks — Task

Parallelism (probably most common strategy) or Divide and Conquer.

• If decomposition/analysis reveals organization in terms of data — Geometric

Decomposition (second most common strategy) or Recursive Data.

• One more possibility — organization is in terms of flow of data (Pipeline and

Event-Based Coordination).



CSCI 3366 November 4, 2005

Slide 3

Pipeline

• Problem statement:

Suppose that the overall computation involves performing a calculation on

many sets of data, where the calculation can be viewed in terms of data

flowing through a sequence of stages. How can the potential concurrency be

exploited?

• Key idea in solution — set up “assembly line” (pipeline).

• Canonical example is signal/image processing application, where you have a

sequence of incoming images and want to apply same sequence of

transformations to each one.

Slide 4

Event-Based Coordination

• Problem statement:

Suppose the application can be decomposed into groups of

semi-independent tasks interacting in an irregular fashion. The interaction is

determined by the flow of data between them which implies ordering

constraints between the tasks. How can these tasks and their interaction be

implemented so they can execute concurrently?

• Key idea in solution — structure computation in terms of semi-independent

entities, interacting via “events”.

• Canonical example is discrete event simulation — simulating many

semi-independent entities that interact in irregular/unpredictable ways.



CSCI 3366 November 4, 2005

Slide 5

Minute Essay

• For each of the six patterns, try to give an example (not from class) of an

application where it would be useful.


