
CSCI 3366 November 21, 2005

Slide 1

Administrivia

• New four-processor machine Dione00 is up and running, with OpenMP
compiler installed. Give it a try, and let me know if there are any problems!

• Homework 4 on Web. Due 11/30.

• Info about projects also on Web. Two due dates:

11/28 — short proposal (one or two paragraphs).

12/13 — presentation, report, code.

• Class Wednesday optional — by showing up, you get an extra attendance
point.

Slide 2

Supporting Structures Design Space, Continued

• Two categories of patterns in this space — program structure and data
structure. We talked about program structure patterns already.

• Now look at patterns for data structures:

– Shared Data (generic advice for dealing with data dependencies).

– Shared Queue (what the name suggests — mostly included as example of
applying Shared Data).

– Distributed Array (what the name suggests).



CSCI 3366 November 21, 2005

Slide 3

Shared Queue

• Many applications — especially ones using a master/worker approach —
need a shared queue. Programming environment might provide one, or might
not. Nice example of dealing with a shared data structure anyway.

• Java code in figures 5.37 (p. 185) through 5.40 (p. 189) presents a
step-by-step approach to developing implementation.

Slide 4

Shared Queue, Continued

• Simplest approach to managing a shared data structure where concurrent
modifications might cause trouble — one-at-a-time execution. Shown in
figures 5.37 (nonblocking) and 5.38 (block-on-empty). Only tricky bits are use
of dummy first node and details of take. Reasons to become clearer later.

Usually a good idea to try simplest approach first, and only try more complex
ones if better performance is needed. (“Premature optimization is the root of
all evil.” Attributed to D. E. Knuth; may actually be C. A. R. Hoare.)

• Here, next thing to try is concurrent calls to put and take. Not too hard for
nonblocking queue — figure 5.39. Tougher for block-on-empty queue —
figure 5.40. In both cases, must be very careful.

• If still too slow, or a bottleneck for large numbers of UE, explore distributed
queue.



CSCI 3366 November 21, 2005

Slide 5

Distributed Array

• Key data structures for many scientific-computing applications are large
arrays, often 2D or 3D.

• If we have lots and lots of memory shared among UEs, and time to access an
element doesn’t depend on UE, all is well. Usually not the case. though —
obviously true for distributed-memory systems, somewhat true for NUMA
systems also.

• So — typical approach is to partition array into blocks and distribute them
among UEs. Idea is to do this to get:

– Good load balance.

– Minimum communication.

– “Clarity of abstraction”. Key idea — global indices versus local indices.

Pictures are easy to draw; code can get messy.

Slide 6

Distributed Array, Continued

• Commonly used approaches (“distributions”):

– 1D block.

– 2D block.

– Block-cyclic.

• For some problems (such as heat distribution problem), makes sense to
extend each “local section” with “ghost boundary” containing values needed
for update.

• MPI version of heat distribution code — figures 4.14 and 4.15 (pp. 90–91).



CSCI 3366 November 21, 2005

Slide 7

Minute Essay

• None — sign in.


