
CSCI 3366 January 18, 2005

Slide 1

Administrivia

• Lecture notes/slides available on the Web after class (eventually).

• Reading assignments on “Lecture notes and assignments” page.

Slide 2

Hardware for Parallel Computing — Overview

• Hardware for sequential computing pretty much all builds on the same model

— “von Neumann architecture”.

• Hardware for parallel computing is more diverse. Some major categories:

– SIMD / vector architectures.

– MIMD with shared memory.

– MIMD with distributed memory.

• All of these have a long history, going back to early days of computing

(1960-something).



CSCI 3366 January 18, 2005

Slide 3

SIMD Architectures

• Basic idea sort of implied by name (Single Instruction, Multiple Data) — many

identical arithmetic units all executing the same instruction stream in lockstep

(via single control unit), each on its own data. Can have separate memory for

each AU or all can share.

• Vector processor — addition(s) to CPU meant to speed up operations on

arrays (vectors) by using pipelining and/or multiple AUs. Can be thought of as

a special case of (pipelined) SIMD.

• Both used more widely in early supercomputers than now, except in

special-purpose hardware.

Slide 4

MIMD Architectures

• Again, basic idea implied by name (Multiple Instruction, Multiple Data) —

many processors, each executing its own stream of instructions on its own

data.

• Category is broad enough, and popular enough, to consider two

subcategories (shared and distributed memory).



CSCI 3366 January 18, 2005

Slide 5

Shared-Memory MIMD Architectures

• Basic idea here — multiple processors, all with access to a common (shared)

memory.

• Details of access to shared memory vary — shared bus versus crossbar

switch, management of caches, etc. Textbook for CSCI 2321 has (some)

details. Access to memory can be “constant-time” (SMP) or can vary

(ccNUMA).

• Attractive from programming point of view, but not very scalable.

• Many, many examples, from early mainframes to dual-processor PCs to

multicore chips.

• Conceptually, each processor has access to all memory locations via normal

memory-access instructions (e.g., load/store). Convenient, but has some

potential drawbacks (“race conditions”). Hardware and/or programming

environment must provide “synchronization mechanism(s)”.

Slide 6

Distributed-Memory MIMD Architectures

• Basic idea here — multiple processors, each with its own memory,

communicating via some sort of interconnect network.

• Details of interconnect network vary — can be custom-built “backplane” or

standard network. Various “topologies” possible. Textbook for CSCI 2321 has

(some) details.

• Not initially as attractive from a programming point of view, but very scalable.

• Examples include “massively parallel” supercomputers, Beowulf clusters,

networks of PCs/workstations, etc.

• Conceptually, each processor has access only to its own memory via normal

memory-access instructions (e.g., load/store). Communication between

processors is via “message-passing” (details depending on type of

interconnect network). Not so convenient, but much less potential for race

conditions.



CSCI 3366 January 18, 2005

Slide 7

“Parallel Hardware is Becoming Mainstream”?

• It’s been an article of faith for a long time that eventually we’d hit physical

limits on speed of single CPUs. Still, interpretation of Moore’s law as “CPU

speed doubles every 1.5 years” seems to be holding up.

• But — strictly speaking, Moore’s law says that the number of transistors that

can be placed on a die doubles every 1.5 years.

• Historically that has meant — more or less — doubling speed and memory

size. May cease to do so soon — tricks hardware designers use to get more

speed require higher power density, generate more heat, etc.

• So, what to do with all those transistors? Provide hardware support for

parallelism! current buzzphrases are “multicore chip” and “Hyper Threading”.

Slide 8

One Approach — Multicore Chips

• Key idea here — chip includes several (usually two or four) “cores”, all sharing

one connection to memory.

• Each “core” is a CPU in the sense we talk about in Computer Design; each

typically has its own first-level cache.

• To fully exploit this for a single application, probably need multiple threads.



CSCI 3366 January 18, 2005

Slide 9

Another Approach — Hyper Threading

• Key idea here — chip includes hardware support for having more than one

thread at a time “active”, but strictly speaking only a single processing core.

Replicated components include program counter, ALU.

• What this allows is very fine-grained multithreading (“more than one logical

CPU”), which can hide latency.

• To fully exploit this for a single application, probably need multiple threads.

Slide 10

“Parallel Hardware is Becoming Mainstream”?,
Continued

• In addition to hardware support for shared-memory parallelism —

Ubiquity of networking makes almost any PC part of a “cluster”.



CSCI 3366 January 18, 2005

Slide 11

Programming Models

• Two broad categories of currently popular hardware (shared-memory MIMD

and distributed-memory MIMD).

• Analogously, two basic programming models: shared memory and message

passing. Obviously shared-memory model works well with shared-memory

hardware, etc., but can also do message-passing on shared-memory

hardware, or (with more difficulty) emulated shared memory on

distributed-memory hardware.

Slide 12

Programming Environments

• So, do you need a special language for parallel programming, or what? Many

choices (see Table 2.1 in book); broad categories are as discussed last time:

– Parallelizing compilers (not very feasible, it appears).

– Languages with built-in support.

– Extensions to sequential languages.

– Libraries to be called from sequential languages.

• We chose three representative environments — Java, OpenMP, and MPI.

More next time . . .



CSCI 3366 January 18, 2005

Slide 13

Minute Essay

• Have you taken / are you taking CSCI 2321 (Computer Design)? How much

do you remember from it?


