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Administrivia

• Reading assignments updated on Web. Plan is for assignment to match what

I will cover in lecture.

• Homework 1 will be on Web soon. Probably not due until a week from

Tuesday, but I may post it “early” for those who are eager?
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Minute Essay From Last Lecture

• Have you taken / are you taking CSCI 2321 (Computer Design)? How much

do you remember from it?

Most people have — but not all — and most people say they remember

something. If I assume too much, speak up please!
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Parallel Programming Environments

• By “programming environments” we mean languages / libraries / extensions.

There are many!

• For our book we chose one of each:

– MPI (library) because it’s something of a standard for message-passing

programming.

– OpenMP (language extension) because it’s emerging as a standard for

shared-memory programming.

– Java because it’s widely available and might be many people’s first

exposure to parallel programming.

• Other popular programming environments — POSIX threads (Pthreads),

Win32 API, PVM, . . .
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Sketch of Parallel Algorithm Development

• Start with understanding of problem to be solved / application.

• Decompose computation into “tasks” — snippets of sequential code that you

might be able to execute concurrently.

• Analyze tasks and data — how do tasks depend on each other? what data do

they access (local to task and shared)?

(Or start with decomposition of data and infer tasks from that.)

• Plan how to map tasks onto “units of execution” (threads/processes) and

coordinate their execution. Also plan how to map these onto “processing

elements”.

• Translate this design into code.

• Our book organizes all of this into four “design spaces”. For this course, we’ll

start at the bottom and work up, so we can start writing code now!
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But First, A Few Words About Performance

• If the point is to “make the program run faster” — can we quantify that?

• Sure. Several ways to do that. One is “speedup” —

S(P ) =
Ttotal (1)

Ttotal (P )

• What would you guess is the best possible value for S(P )?
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Amdahl’s Law

• Of course, most “real programs” have some parts that have to be done

sequentially. Gene Amdahl (principal architect of early IBM mainframe(s))

argued that this limits speedup — “Amdahl’s Law”:

If γ is the “serial fraction”, speedup on P processors is (at best — this

ignores overhead)

S(P ) =
1

γ + 1−γ
P

and as P increase, this approaches 1
γ — upper bound on speedup.

(Details of math in chapter 2.)
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Parallel Overhead

• As we will find out — many reasons why a “real” parallel program might be

slower than Amdahl’s Law predicts.

• For shared-memory programming — if we need to synchronize use of shared

variables, that takes time.

• For message-passing programming — sending messages takes time.

Typically time to send a message involves a fixed cost plus a per-byte cost.

• Also, “poor load balance” may slow things down.

• But sometimes we can speed things up by “overlapping computation and

communication”.
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Basics of Message-Passing Programming

• Idea of message-passing programming is simple:

An executing program consists of a bunch of “processes” running

concurrently. Usually one per processor (PE), but could be more. (Why?)

They communicate by sending/receiving messages. Simplest form is “point to

point” — process A sends a message (with some data) to process B, which

receives it. (Can also define “collective communication”.)

• And then there are many interesting details — can sending process proceed

without waiting? what happens if you try to receive a message and it hasn’t

been sent? etc., etc.



CSCI 3366 January 20, 2005

Slide 9

MPI — the Message Passing Interface

• Idea was to come up with a single standard (concepts and library) for

message-passing programs, then allow many implementations. Similar to

language standards (C, C++, etc.). Good for portability.

• MPI Forum — international consortium — began work in 1992. MPI 1.1 and

MPI 2.0 standards defined. Huge! 1.1 specification is 500+ pages.

• Reference implementation — MPICH (Argonne National Lab). Another

popular and free implementation (installed here) — LAM/MPI (Local Area

Multicomputer).
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What’s an MPI Program Like?

• “SPMD” (Single Program, Multiple Data) model — many processes, all

running the same source code, but each with its own memory space and

each with a different ID. Could take different paths through the code

depending on ID.

• Source code in C/C++/Fortran, with calls to MPI library functions.

• How programs get started isn’t specified by the standard! (for

historical/political reasons — some early target platforms were very

restrictive, would not have supported what academic-CS types wanted).
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What’s in the MPI Library?

• Setup and bookkeeping — initialization, cleanup, environment query, etc.

• Data management — pack/unpack, derived data types.

• Point-to-point communication — several varieties, differing mostly in how

much synchronization.

• Collective operations — e.g., broadcast.
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MPI “Communicators”

• (One more thing to define before we can write simple code.)

• MPI allows grouping processes; group plus associated context called a

“communicator”. Makes it easier to write “safe” parallel libraries.

• Predefined communicator MPI COMM WORLD includes all processes.

Programmers can create additional ones.
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Simple Examples / Compiling and Executing

• Let’s look at some simple programs — hello.c and send-recv.c.

(These are on the Web, linked from sample programs page, with short

instructions on how to use MPI.)

• We’ll use the LAM/MPI that comes with FC2. There should be man pages for

all commands and functions.

• Compile with mpicc.

• Before running, must “boot” (lamboot command) — start MPI background

processes on all machines to be used.

• Execute with mpirun.

• Shut down with lamhalt. (Otherwise background processes continues to

run.)
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Minute Essay Answer

• No change in what process 1 does/prints, but process 0 would now

(misleadingly) print the changed values.


