
CSCI 3366 January 20, 2005

Slide 1

Administrivia

• Reading assignments updated on Web. Plan is for assignment to match what

I will cover in lecture.

• Homework 1 will be on Web soon. Probably not due until a week from

Tuesday, but I may post it “early” for those who are eager?

Slide 2

Minute Essay From Last Lecture

• Have you taken / are you taking CSCI 2321 (Computer Design)? How much

do you remember from it?

Most people have — but not all — and most people say they remember

something. If I assume too much, speak up please!



CSCI 3366 January 20, 2005

Slide 3

Parallel Programming Environments

• By “programming environments” we mean languages / libraries / extensions.

There are many!

• For our book we chose one of each:

– MPI (library) because it’s something of a standard for message-passing

programming.

– OpenMP (language extension) because it’s emerging as a standard for

shared-memory programming.

– Java because it’s widely available and might be many people’s first

exposure to parallel programming.

• Other popular programming environments — POSIX threads (Pthreads),

Win32 API, PVM, . . .

Slide 4

Sketch of Parallel Algorithm Development

• Start with understanding of problem to be solved / application.

• Decompose computation into “tasks” — snippets of sequential code that you

might be able to execute concurrently.

• Analyze tasks and data — how do tasks depend on each other? what data do

they access (local to task and shared)?

(Or start with decomposition of data and infer tasks from that.)

• Plan how to map tasks onto “units of execution” (threads/processes) and

coordinate their execution. Also plan how to map these onto “processing

elements”.

• Translate this design into code.

• Our book organizes all of this into four “design spaces”. For this course, we’ll

start at the bottom and work up, so we can start writing code now!



CSCI 3366 January 20, 2005

Slide 5

But First, A Few Words About Performance

• If the point is to “make the program run faster” — can we quantify that?

• Sure. Several ways to do that. One is “speedup” —

S(P ) =
Ttotal (1)

Ttotal (P )

• What would you guess is the best possible value for S(P )?

Slide 6

Amdahl’s Law

• Of course, most “real programs” have some parts that have to be done

sequentially. Gene Amdahl (principal architect of early IBM mainframe(s))

argued that this limits speedup — “Amdahl’s Law”:

If γ is the “serial fraction”, speedup on P processors is (at best — this

ignores overhead)

S(P ) =
1

γ + 1−γ
P

and as P increase, this approaches 1
γ — upper bound on speedup.

(Details of math in chapter 2.)



CSCI 3366 January 20, 2005

Slide 7

Parallel Overhead

• As we will find out — many reasons why a “real” parallel program might be

slower than Amdahl’s Law predicts.

• For shared-memory programming — if we need to synchronize use of shared

variables, that takes time.

• For message-passing programming — sending messages takes time.

Typically time to send a message involves a fixed cost plus a per-byte cost.

• Also, “poor load balance” may slow things down.

• But sometimes we can speed things up by “overlapping computation and

communication”.

Slide 8

Basics of Message-Passing Programming

• Idea of message-passing programming is simple:

An executing program consists of a bunch of “processes” running

concurrently. Usually one per processor (PE), but could be more. (Why?)

They communicate by sending/receiving messages. Simplest form is “point to

point” — process A sends a message (with some data) to process B, which

receives it. (Can also define “collective communication”.)

• And then there are many interesting details — can sending process proceed

without waiting? what happens if you try to receive a message and it hasn’t

been sent? etc., etc.



CSCI 3366 January 20, 2005

Slide 9

MPI — the Message Passing Interface

• Idea was to come up with a single standard (concepts and library) for

message-passing programs, then allow many implementations. Similar to

language standards (C, C++, etc.). Good for portability.

• MPI Forum — international consortium — began work in 1992. MPI 1.1 and

MPI 2.0 standards defined. Huge! 1.1 specification is 500+ pages.

• Reference implementation — MPICH (Argonne National Lab). Another

popular and free implementation (installed here) — LAM/MPI (Local Area

Multicomputer).

Slide 10

What’s an MPI Program Like?

• “SPMD” (Single Program, Multiple Data) model — many processes, all

running the same source code, but each with its own memory space and

each with a different ID. Could take different paths through the code

depending on ID.

• Source code in C/C++/Fortran, with calls to MPI library functions.

• How programs get started isn’t specified by the standard! (for

historical/political reasons — some early target platforms were very

restrictive, would not have supported what academic-CS types wanted).



CSCI 3366 January 20, 2005

Slide 11

What’s in the MPI Library?

• Setup and bookkeeping — initialization, cleanup, environment query, etc.

• Data management — pack/unpack, derived data types.

• Point-to-point communication — several varieties, differing mostly in how

much synchronization.

• Collective operations — e.g., broadcast.

Slide 12

MPI “Communicators”

• (One more thing to define before we can write simple code.)

• MPI allows grouping processes; group plus associated context called a

“communicator”. Makes it easier to write “safe” parallel libraries.

• Predefined communicator MPI COMM WORLD includes all processes.

Programmers can create additional ones.



CSCI 3366 January 20, 2005

Slide 13

Simple Examples / Compiling and Executing

• Let’s look at some simple programs — hello.c and send-recv.c.

(These are on the Web, linked from sample programs page, with short

instructions on how to use MPI.)

• We’ll use the LAM/MPI that comes with FC2. There should be man pages for

all commands and functions.

• Compile with mpicc.

• Before running, must “boot” (lamboot command) — start MPI background

processes on all machines to be used.

• Execute with mpirun.

• Shut down with lamhalt. (Otherwise background processes continues to

run.)

Slide 14

Minute Essay Answer

• No change in what process 1 does/prints, but process 0 would now

(misleadingly) print the changed values.


