CSCI 3366 January 20, 2005

4)

Administrivia

e Reading assignments updated on Web. Plan is for assignment to match what

| will cover in lecture.

e Homework 1 will be on Web soon. Probably not due until a week from
Tuesday, but | may post it “early” for those who are eager?

Slide 1
Minute Essay From Last Lecture
e Have you taken / are you taking CSCI 2321 (Computer Design)? How much
do you remember from it?
Most people have — but not all — and most people say they remember
something. If | assume too much, speak up please!
Slide 2

CSCI 3366 January 20, 2005

Parallel Programming Environments

e By “programming environments” we mean languages / libraries / extensions.
There are many!
e For our book we chose one of each:

— MPI (library) because it's something of a standard for message-passing
Slide 3 programming.

— OpenMP (language extension) because it's emerging as a standard for
shared-memory programming.
— Java because it's widely available and might be many people’s first

exposure to parallel programming.

e Other popular programming environments — POSIX threads (Pthreads),
Win32 API, PVM, ...

. J

-

Sketch of Parallel Algorithm Development

e Start with understanding of problem to be solved / application.

e Decompose computation into “tasks” — snippets of sequential code that you
might be able to execute concurrently.

e Analyze tasks and data — how do tasks depend on each other? what data do
slide 4 they access (local to task and shared)?

(Or start with decomposition of data and infer tasks from that.)
e Plan how to map tasks onto “units of execution” (threads/processes) and

coordinate their execution. Also plan how to map these onto “processing
elements”.

e Translate this design into code.

e Our book organizes all of this into four “design spaces”. For this course, we'll
start at the bottom and work up, so we can start writing code now!

J

CSCI 3366 January 20, 2005

4)

But First, A Few Words About Performance

e |f the point is to “make the program run faster” — can we quantify that?

e Sure. Several ways to do that. One is “speedup” —

T 1
S(P) _ total()
Ttotal(P)
Slide 5
e What would you guess is the best possible value for S(P)?
Amdahl’s Law
e Of course, most “real programs” have some parts that have to be done
sequentially. Gene Amdahl (principal architect of early IBM mainframe(s))
argued that this limits speedup — “Amdahl’s Law”:
If v is the “serial fraction”, speedup on P processors is (at best — this
Slide 6 ignores overhead)
1
S (P) = 1
Y+ 5

and as P increase, this approaches % — upper bound on speedup.

(Details of math in chapter 2.)

CSCI 3366 January 20, 2005

Parallel Overhead

e As we will find out — many reasons why a “real” parallel program might be
slower than Amdahl’s Law predicts.

e For shared-memory programming — if we need to synchronize use of shared

variables, that takes time.

Slide 7 e For message-passing programming — sending messages takes time.
Typically time to send a message involves a fixed cost plus a per-byte cost.

e Also, “poor load balance” may slow things down.

e But sometimes we can speed things up by “overlapping computation and
communication”.

4)

Basics of Message-Passing Programming

e |dea of message-passing programming is simple:

An executing program consists of a bunch of “processes” running
concurrently. Usually one per processor (PE), but could be more. (Why?)

They communicate by sending/receiving messages. Simplest form is “point to
Slide 8 point” — process A sends a message (with some data) to process B, which

receives it. (Can also define “collective communication”.)

e And then there are many interesting details — can sending process proceed
without waiting? what happens if you try to receive a message and it hasn’t
been sent? etc., etc.

CSCI 3366 January 20, 2005

MPI — the Message Passing Interface

e |dea was to come up with a single standard (concepts and library) for
message-passing programs, then allow many implementations. Similar to

language standards (C, C++, etc.). Good for portability.

e MPI Forum — international consortium — began work in 1992. MPI 1.1 and

Slide 9 MPI 2.0 standards defined. Huge! 1.1 specification is 500+ pages.

e Reference implementation — MPICH (Argonne National Lab). Another
popular and free implementation (installed here) — LAM/MPI (Local Area
Multicomputer).

What's an MPI Program Like?

e “SPMD” (Single Program, Multiple Data) model — many processes, all
running the same source code, but each with its own memory space and
each with a different ID. Could take different paths through the code
depending on ID.

Slide 10 e Source code in C/C++/Fortran, with calls to MPI library functions.

® How programs get started isn’t specified by the standard! (for
historical/political reasons — some early target platforms were very
restrictive, would not have supported what academic-CS types wanted).

CSCI 3366 January 20, 2005

What’s in the MPI Library?

Setup and bookkeeping — initialization, cleanup, environment query, etc.

Data management — pack/unpack, derived data types.

Point-to-point communication — several varieties, differing mostly in how

much synchronization.
Slide 11

Collective operations — e.g., broadcast.

MPI “Communicators”

e (One more thing to define before we can write simple code.)

o MPI allows grouping processes; group plus associated context called a
“communicator”. Makes it easier to write “safe” parallel libraries.

e Predefined communicator MP I _COMM_WORLD includes all processes.
Slide 12 Programmers can create additional ones.

CSCI 3366 January 20, 2005

Simple Examples / Compiling and Executing

e |et’s look at some simple programs — hello.c and send-recv.c.
(These are on the Web, linked from sample programs page, with short
instructions on how to use MPI.)

o We'll use the LAM/MPI that comes with FC2. There should be man pages for
Slide 13 all commands and functions.

o Compile withmpicc.

e Before running, must “boot” (Lamboot command) — start MPI background
processes on all machines to be used.

e Execute with mpirun.

e Shut down with Lamhalt. (Otherwise background processes continues to

run.)

. J

e No change in what process 1 does/prints, but process 0 would now
(misleadingly) print the changed values.

Slide 14

