
CSCI 3366 January 25, 2005

Slide 1

Administrivia

• Homework 1 will be on Web later today. Due next Tuesday. Simple MPI

program.

Slide 2

Minute Essay From Last Lecture

• Question: Look again at the simple send/receive program. What do you think

would happen (i.e., what would print) if right after the call to MPI Send we

changed one or both elements of buff?

• Answer?



CSCI 3366 January 25, 2005

Slide 3

Timing MPI Programs

• “How long did it take?” often of interest. Can use system tools (e.g., time

command) to check total elapsed time. Or can time “interesting” parts of

program:

MPI Wtime returns elapsed time; call twice and subtract to find out how

long something takes (time msg.c on “sample programs” page).

• How meaningful output is depends — e.g., on whether the system is

otherwise idle. Probably best to repeat observations a few times, and do

some sort of averaging.

Slide 4

Simple (Blocking) Point-to-Point Communication in MPI

• Send with MPI Send — returns as soon as data has been copied to system

buffer, buffer in program can be reused.

• Receive with MPI Recv — waits until message has been received.

• Can use “tags” to distinguish between kinds of messages. Can receive

selectively or not (MPI ANY TAG). Received tag is in returned

MPI Status variable (e.g., status.MPI TAG).

• Can receive from specific sender or from any sender. (MPI ANY SOURCE).

Sender is in returned MPI Status variable (e.g.,

status.MPI SOURCE).

• For MPI Recv, “length” parameter specifies buffer length. Use

MPI Get count to get actual count.



CSCI 3366 January 25, 2005

Slide 5

Not-So-Simple Point-to-Point Communication in MPI

• For not-too-long messages and when readability is more important than

performance, MPI Send and MPI Recv are probably fine.

• If messages are long, however, buffering can be a problem, and can even

lead to deadlock. Also, sometimes it’s nice to be able to overlap computation

and communication.

• Therefore, MPI offers several other kinds of send/receive functions —

“synchronous” (blocks both sender and receiver until communication can take

place), “non-blocking” (doesn’t block at all, program must later test/wait for

communication to take place).

Slide 6

Collective Communication in MPI

• “Collective communication” operation — one that involves many processes

(typically all, or all in MPI “communicator”).

• Could implement using point-to-point message passing, but some operations

are common enough to be library functions — broadcast (MPI Bcast),

“reduction” (MPI Reduce), etc.



CSCI 3366 January 25, 2005

Slide 7

Example — Numerical Integration

• Compute π by integrating
∫ 1

0
4

1+x2 dx.

• Do this numerically by approximating area under curve by many small

rectangles, computing their area, adding results.

• Sequential program fairly straightforward (num-int-seq.c on “sample

programs” page).

• “Parallelize” how? (num-int-par.c on “sample programs” page).

Slide 8

Minute Essay

• Any questions so far about MPI?


