
CSCI 3366 February 17, 2005

Slide 1

Administrivia

• Sample programs page updated. Instructions for installing and using

OpenMP compiler added. Homework 2 on Web soon.

Slide 2

Parallel Programming in Java

• Java supports multithreaded (shared-memory parallel) programming as part

of the language — synchronized keyword, wait and notify

methods of Object class, Thread class. Programs that use the GUI

classes (AWT or Swing) multithreaded under the hood. Justification probably

has more to do with hiding latency than HPC, but still useful, and latest

version (1.5) includes much new library stuff.

Aside: If you’re curious about thread use in a program that uses AWT or

Swing classes, the following line will print info about threads:

Thread.currentThread().getThreadGroup().list();

• Java also provides support for forms of distributed-memory programming,

through library classes for networking, I/O (java.nio), and Remote

Method Invocation (RMI).



CSCI 3366 February 17, 2005

Slide 3

What Does A Multithreaded Java Program Look Like?

• Easy answer: Like a regular Java program. (In fact, any program with a

GUI . . . )

• Programming model is somewhat like that of OpenMP — all threads share a

common address space — but programmer is responsible for creating

threads, providing synchronization, etc.

Slide 4

Creating Threads in Java

• Threads are all instances of Thread class (or a subclass). Pre-1.5, two

ways to create threads:

– Create a subclass of Thread (frowned on by o-o purists).

– Create a Thread using an object that implements Runnable

(preferable).

Either way, run method (of subclass of Thread, or of Runnable)

contains code for thread to execute.

• Start thread with start method. Can wait for it to finish with join.

• “Hello world” example (Hello1.java and Hello2.java on sample

programs page).



CSCI 3366 February 17, 2005

Slide 5

Shared Variables in Java

• Code executed by a thread is some object’s run method. Access to

variables is consistent with usual Java scoping — class/instance variables,

parameters, etc.

• As we noted before, though, simultaneous access to shared variables can be

risky, however. So . . .

Slide 6

Synchronization in Java

• Interaction among threads in Java based on “monitor” idea (Hoare (1975) and

Brinch Hansen (1975)).

• Every object has implicit lock; synchronized keyword means “only run

this when you have the relevant lock” — if another thread has the lock, wait.

Can be used to ensure one-at-a-time access to critical variables.

“Relevant lock”? For synchronized methods, lock for object (instance

methods) or class (static methods). For synchronized blocks, you specify the

object.

Example — HelloSynch.java on sample programs page.

• wait and notify methods allow more interesting kinds of coordination

(next time).



CSCI 3366 February 17, 2005

Slide 7

Numerical Integration Example, Revisited

• We all remember the problem. Let’s write in Java (NumInt.java on

sample programs page).

Slide 8

Minute Essay

• What’s your username on Sol? (This is so I can check/increase your

filesystem quota on Sol, so you can install the OpenMP compiler.)

(Okay to share pieces of paper on this one.)


