
CSCI 3366 February 24, 2005

Slide 1

Administrivia

• Homework 2 writeup to be on Web later today or early tomorrow. Due next

Thursday. Some background/discussion today in class.

Slide 2

Multithreaded Programming in Java — A Bit More

• Corrected/expanded bounded-buffer example (BoundedBuffer.java

and TestBoundedBuffer.java on sample programs page).

• Typical use of threads in Java is in a GUI program, to hide latency and/or do

some sort of background activity (e.g., animation). Probably can do most

things with newer Swing features rather than with explicit threads. Review

“How to Use Threads” in Sun’s Swing tutorial.

• Other uses of threads — hide latency (e.g., in a server program, to start a

new thread for each client), improve performance on multiprocessor machines

(was rare, maybe will be less so). Many new features in Java 1.5

(java.util.concurrent package).



CSCI 3366 February 24, 2005

Slide 3

Homework 2 Background

• In Homework 2, you will make a first pass at writing a set of programs (one

using MPI, one using OpenMP, and one using Java) to solve the following

problem. (We’ll talk more about it in class after you’ve tried it.)

• We talked about computing π using numerical integration. Another interesting

(surprising?) approach uses a “Monte Carlo” method:

Consider a square with sides of length 2 (any unit you like), enclosing a circle

of radius 1.

Approximate the area of the circle by “throwing darts” at the square, counting

how many fall within the circle, and calculating the ratio of those within the

circle to the total number.

Model “throwing darts” by using pseudorandom number generator to

generate coordinates of a point.

Slide 4

And Now For Something Somewhat (not completely)
Different

• Early in the semester I said — this is “PAD I for parallel programming”. In

PAD I you learn

– Details — what programs look like, how to write/compile/run them,

simplified mental model of how this relates to hardware.

– “Principles of algorithm design.”

• Material so far has been mostly in that first category — but we need it as

background for the “principles” part.

• Now we’ll turn to the more abstract stuff about algorithm design — our

“pattern language”.



CSCI 3366 February 24, 2005

Slide 5

A Few Words About Design Patterns

• Idea originated with architect Christopher Alexander (first book 1977). Briefly

— look for problems that have to be solved over and over, and try to come up

with “expert” solution, write it in a form accessible to others. Usually this

means adopting some “pattern format” to use for all patterns.

A good pattern has an “aha!” aspect.

• First used in CS in OOD/OOP, about 1987. Really started to take off in OO

community with “Gang of Four” book (Gamma, Helms, Johnson, and

Vlissides; 1995). Now can find people writing patterns in many, many areas.

• To give you the idea — look at some simple patterns, e.g.,

http://www.cs.duke.edu/˜ola/patterns/plopd/loops.html.

Slide 6

“A Pattern Language for Parallel Programming”?

• Goal of our book (and preceding work) — apply this idea in parallel

computing.

• We started out looking for patterns representing high-level structures for

parallel programs, thinking there might be a dozen of them.

• At some point we realized we also wanted to talk about how you get from the

original problem to one of these structures — i.e., how do expert parallel

programmers think about how to decompose a problem, etc.? and also about

commonly-occurring data structures and program structures, and how to map

high-level designs/structures into real programming environments.

• Eventually — four-layer “pattern language”. (Notice that “pattern language”

connotes common vocabulary more than grammatical structure. Not a

programming language!)



CSCI 3366 February 24, 2005

Slide 7

Overall Organization of Our Pattern Language

• Four “design spaces” corresponding to phases in design:

�����������	��

�������������������

��� ���������! �"$#��!���	���%�����

#��'&�&(�����!�����)#��!���	���!���*��+

,-".& � ��"/�����%0��!�1����23�-�4 �0��5��+-"6+

• Idea is that you start at the top, work your way down, possibly with some

backtracking.

Slide 8

Overall Organization of Our Pattern Language,
Continued

• Finding Concurrency patterns — how to decompose problems, analyze

decomposition.

• Algorithm Structure patterns — high-level program structures.

• Supporting Structure patterns — program structures (e.g., SPMD, fork/join),

data structures (e.g., shared queue).

• Implementation Mechanisms — no patterns, but generic discussion of

“building blocks” provided by programming environments. Details of three

specific environments in appendices.



CSCI 3366 February 24, 2005

Slide 9

Minute Essay

• Have you heard of design patterns before? worked with them / studied them?

(e.g., in Dr. Lewis’s OOP seminar class?)


