
CSCI 3366 March 10, 2005

Slide 1

Administrivia

• As mentioned in e-mail — since there were no objections Tuesday, I’ve

changed the syllabus for the course to remove the two exams. Grades will be

based on homework, project, and attendance/participation.

• I’m scheduled to teach this course again next fall, and it’s time to turn in book

orders. Are any of you making any use of the “recommended” text (Quinn)?

I’m not using it as much as I’d planned — or not yet anyway — so maybe it

could/should be dropped. ?

Slide 2

Minute Essay From Last Lecture

• Question was “tell me about your experiences with Homework 2.” Several

people hadn’t started, or weren’t done.

Those who were done mentioned disappointing performance. (Hence my

comment that we should revisit later.)

Most people liked MPI or OpenMP better, depending partly on familiarity, but

OpenMP’s ease of use a factor too.

CSCI 3366 March 10, 2005

Slide 3

Review — Organization of Our Pattern Language

• Four “design spaces” corresponding to phases in design:

– Finding Concurrency patterns — how to decompose problems, analyze

decomposition.

– Algorithm Structure patterns — high-level program structures.

– Supporting Structure patterns — program structures (e.g., SPMD,

fork/join), data structures (e.g., shared queue).

– Implementation Mechanisms — no patterns, but generic discussion of

“building blocks” provided by programming environments.

• Last time we looked at the bottom level. Now we move a level up . . .

Slide 4

Supporting Structures Design Space

• Key idea here — represent (and talk about in general terms) two classes of

commonly-used things:

– Program structures — e.g., SPMD (think “like MPI programs”).

– Frequently-used data structures — e.g., shared queue.

• Terminology note: By “task” we mean a sequence of operations that makes

up some logical part of the program — e.g., computing the area of one

rectangle in the numerical integration example. Two of the design challenges

in parallel programming are breaking up the computation into tasks, and then

organizing them back into a parallel algorithm.

• Typographical note: That gray-square symbol in the margin on p. 126 (and

elsewhere) means “start of a pattern”. The publishers thought it would be a

good idea to do this . . .

CSCI 3366 March 10, 2005

Slide 5

Forces

• Part of the “design pattern” idea is that a good pattern represents a good

trade-off between “forces” pulling in different directions.

• For the patterns in this chapter, common set of forces:

– Clarity of abstraction — is structure clear from code?

– Scalability — does program “scale” well to large numbers of PEs

(processing elements)?

– Efficiency — does it make good use of resources?

– Maintainability — can humans understand it?

– Environmental affinity — does it work well in the likely target

environment(s)?

– Sequential equivalence — same results no matter how many processes?

Slide 6

But First — A Few Words About Higher-Level Patterns

• Task Parallelism — decompose problem into lots of tasks, independent or

nearly so. Example: numerical integration.

• Divide and Conquer — decompose recursively as in divide-and-conquer

algorithms. Examples: quicksort, mergesort.

• Geometric Decomposition — decompose based on data (by rows, by

columns, etc.). Example: Mesh-based computation.

• Recursive Data — rethink computation to expose unexpected concurrency.

Ignore for now.

• Pipeline — decompose based on assembly-line analogy.

• Event-Based Coordination — decompose problem into entities interacting

asynchronously.

CSCI 3366 March 10, 2005

Slide 7

Program Structure Patterns

• Today — overview. After spring break — more interesting examples.

• We identified four basic ways parallel programs can be structured:

– SPMD (Single Program, Multiple Data).

– Master/Worker.

– Loop Parallelism.

– Fork/Join.

If we chose the names well, you should be able to make some guesses about

what the patterns represent just from the names. (Maybe not for all of these.)

Slide 8

SPMD — Context/Forces

• Often makes sense, especially for large-scale parallelism, to have all UEs

doing more or less the same thing, each on a different part of the overall data;

easier to manage complexity this way too.

→ “Single Program, Multiple Data” paradigm. Good fit, too, with hardware for

large-scale parallelism

• But typically they don’t all do exactly the same thing, so you need some way

to have different UEs do slightly different things.

CSCI 3366 March 10, 2005

Slide 9

SPMD — Solution Elements

• All UEs execute the same (source) code: Initialize, obtain unique ID, compute,

finalize.

• Based on ID, different UEs can do different things. (Typically the differences

are modest — e.g., only one process prints results — but in the extreme, you

get “MPMD” effect.)

• Typically, problem data includes:

– Data structures shared by all UEs. If no shared memory, must replicate,

possibly recombine at end.

– Data structures logically distributed among UEs. Idea is to partition data in

a way that matches how the computation is partitioned.

Slide 10

SPMD — Examples and Uses

• Very, very common, especially for MPI programs. Particularly good for Task

Parallelism and Geometric Decomposition problems.

• Example — numerical integration:

– Logical choice for MPI (see our example). One choice we could make,

though, is how to partition data (loop iterations) among UEs — by blocks,

or cyclically? Only one “shared” variable — sum being computed. Notice

that in effect we replicate the variable, and recombine at the end.

– Can do something in similar in OpenMP (see our example, early versions).

CSCI 3366 March 10, 2005

Slide 11

Loop Parallelism — Context/Forces

• Programs in traditional application areas for parallel programming — science

and engineering — mostly loop-based. Optimizing loops has a long history —

first vectorizing, then parallelizing.

• Particularly appealing approach when a sequential program already exists,

and you want to convert (“parallelize”) it. Sometimes conversion can be done

one loop at a time — easier to develop/test/debug.

Slide 12

Loop Parallelism — Solution Elements

• Find computationally intensive loops. (No point, for example, in spending a lot

of time parallelizing initialization code.)

• Eliminate loop-carried dependencies (e.g., replicating variables so each UE

has a copy).

• Parallelize loops — arrange for iterations to be distributed among UEs.

• Optimize loop “schedule” (how iterations are mapped to UEs).

CSCI 3366 March 10, 2005

Slide 13

Loop Parallelism — Examples and Uses

• Probably the second most common, especially for OpenMP programs.

Particularly good for Task Parallelism and Geometric Decomposition

problems.

• Example — numerical integration in OpenMP (see our example, last version).

Slide 14

Master/Worker — Context/Forces

• For applications where it’s easy to tell how to split up the computational load

to get “good load balance”, previous two patterns usually work well.

• But for some applications, it’s not so obvious how to do this — maybe not

really possible, if work per task varies a lot and is not predictable, or if target

platform includes PEs with different capabilities.

CSCI 3366 March 10, 2005

Slide 15

Master/Worker — Solution Elements

• Basic idea — one or more workers that execute tasks, master that manages

things.

• “Bag of tasks” represents tasks yet to be done. Typically created by master

process; often implemented as shared queue. Workers can pull elements

from it directly, or can communicate with master to get new tasks.

Slide 16

Master/Worker — Solution Elements, Continued

• Typical approach (not the only one, though — master could stay active):

Y

N ��� ��� �

��� 	
 � ��
 � � ��� � � � � 	�
 ��
 �����
� ��� � � � � ��� � ����� � � � � � �

� � � ���!��" � #�$ � �

� " � � � ��#�� %�� &'� � � (�

$ � � ���)�*+� " (� " �

� ��� � � � $ � , �

� � ��� � � �-" � � ��$ � �

� .�� �

� � $ $ � � �-" � � ��$ � �

� � " ��� ��� � �-� � ��� � � � � � � �

� $ � � �/��� � � $0*+� " (� � ��� ���

CSCI 3366 March 10, 2005

Slide 17

Master/Worker — Solution Elements, Continued

• Several potential complications:

– All tasks may be known initially, or new ones may be generated during

computation.

– Usually computation isn’t done until all tasks are done, but sometimes can

stop early.

• Several variations/optimizations:

– Master can turn into a worker after creating tasks. (Obviously more

efficient if it has nothing to do.)

– Master can be implicit, if tasks are loop iterations and dynamic scheduling

of loop iterations is possible.

• Implementation normally involves, to some extent, one of the other patterns in

this chapter.

Slide 18

Master/Worker — Examples and Uses

• Particularly good for Task Parallelism problems with completely independent

tasks (“embarrassingly parallel”).

• Example — MPI generic master/worker program.

CSCI 3366 March 10, 2005

Slide 19

Fork/Join — Context/Forces

• For applications where the number of concurrent tasks is more or less

constant, and relationships among them are simple and regular, previous

patterns usually work well.

• But for some applications, tasks are created dynamically (“forked”) and later

terminated (“joined” with forking task) as program runs. Sometimes you can

still use one of the previous patterns, but sometimes not — if relationships

among tasks are recursive (e.g., Divide and Conquer) or irregular, or if

different tasks represent different functions (i.e., you need to do two or more

different things concurrently).

• In that case, it may make more sense to create a UE for each task —

potentially expensive, but easier to understand.

Slide 20

Fork/Join — Solution Elements

• Simple approach — one task per UE. As new tasks are created, a new UE is

created for each; when the task finishes, the UE is destroyed. Typically the

UE that created the new task/UE waits for it to finish. Simple to understand,

but potentially inefficient.

• More complicated approach — pool of UEs and queue of tasks, with UEs

grabbing new tasks out of the queue as they finish their old tasks. Potentially

more efficient, but more complicated to program and understand.

CSCI 3366 March 10, 2005

Slide 21

Fork/Join — Examples and Uses

• Particularly good for Divide and Conquer and Recursive Data problems.

One-task-per-UE version is OpenMP’s standard programming model

(expressed implicitly). Also matches (pre-1.5) Java’s support for

multithreading.

(Curiously enough, though, most OpenMP programs really use the simpler

Loop Parallelism.)

• Example — mergesort.

Slide 22

Minute Essay

• None — sign in, and have a nice spring break!

