

Slide 2

Slide 3

Slide 4

	Molecular Dynamics Pseudocode
	<pre>Int const N // number of atoms Array of Real :: atoms (3,N) //3D coordinates Array of Real :: velocities (3,N) //velocity vector Array of Real :: forces (3,N) //force in each dimension Array of List :: neighbors(N) //atoms in cutoff volume</pre>
Slide 5	<pre>loop over time steps vibrational_forces (N, atoms, forces) rotational_forces (N, atoms, forces) neighbor_list (N, atoms, neighbors) non_bonded_forces (N, atoms, neighbors, forces) update_atom_positions_and_velocities (N, atoms, velocities, forces) physical_properties (Lots of stuff) end loop</pre>

Slide 6

Next Step: Consider Key Data Structures

- An array of atom coordinates, one element per atom.
- An array of atom velocities, one element per atom.
- An array of lists, one per atom, each defining the neighborhood of atoms considered to be "close".

Slide 8

• An array of forces on atoms, one element per atom.

