CSCI 3366 March 24, 2005

Administrivia

e (None?)

Slide 1
Molecular Dynamics Example — Recap
e Last time we discussed “the problem” (what we’re computing and how) and
sketched out how to decompose/analyze it.
e Start now by looking a little more at the next level — after we decide that Task
Parallelism is a good overall algorithm structure. Focus just on computation of
Slide 2 “non-bonded forces” (those caused by electrical charges). Other

computations can be treated much the same way. Pseudocode in next slide.

CSCI 3366 March 24, 2005

Pseudocode for Non-Bonded Force Computation

function non_bonded_forces (N, Atoms, neighbors, Forces)
Int const N // number of atoms

Array of Real :: atoms (3,N) //3D coordinates

Array of Real :: forces (3,N) //force in each dimension
Array of List :: neighbors(N) //atoms in cutoff volume
Real :: forceX, forceY, forceZ

loop [i] over atoms
loop [j] over neighbors (i)
forceX = non_bond_force(atoms(1,1), atoms(1l,3))

Slide 3 forceY = non_bond_force (atoms (2,1), atoms(2,3))
forceZ = non_bond_force (atoms (3,1), atoms(3,3))
force(l,1i) += forceX; force(1l,j) —-= forceX;
force(2,i) += forceY; force(2,3) -= forceY;
force(3,i) += forcez; force(3,3) -= forcez;

end loop []j]
end loop [i]
end function non_bonded_forces

-

Molecular Dynamics and Task Parallelism

e How to define tasks so we get “enough but not too many”?

One task per atom pair is too many; one task per atom is probably right.

e How to manage data dependencies (if any)?

Dependency involving forces array — potentially any UE can write to any
Slide 4 element, if we exploit symmetry resulting from Newton’s third law. But
computation is accumulation/reduction, so just give each UE a local copy and
combine all copies at end.

o How to assign tasks to UEs? statically (at compile time) or dynamically (at
runtime)?

Work per task can vary, since how many atoms are “close” varies. Decide at

next level.

. J

CSCI 3366 March 24, 2005

Molecular Dynamics and Task Parallelism, Continued

e How to structure program (i.e., which of Supporting Structures patterns to
use)?
Obvious choices here Loop Parallelism and SPMD. Decide based on target

platform.

Slide 5

~N

Design of Program for Molecular Dynamics

e Finally, we turn the design into code, probably using patterns from Supporting
Structures design space, and possibly some information/understanding from

Implementation Mechanisms.

e Based on previous design steps, consider Loop Parallelism and/or SPMD.
Slide 6 Decide based mostly on target platform. Tables in section 5.3 should be
helpful ...

CSCI 3366

March 24, 2005

Program Structures Versus Algorithm Structures
Geomet- Event-
Task Divide Recur-
ric Based
Paral- and Pipeline sive
Decom- . Coordi-
» lelism Conquer) Data
position nation
SPMD Hokkk HokAk HFokk Hokk *k Kk
Slide 7
Loop
Paral- *okk HokAk Kk
lelism
Mas-
* ok *k * * *
ter/Worker
*k *k *okkok Kokkk KhkKk Kokkok
Fork/Join
Program Structures Versus Programming Environments
MPI OpenMP Java
SPMD *AKK KKk *k
Loop
* Kokkok *okk
Parallelism
. Mas-
Slide 8 as Kk *k Kok
ter/Worker
Fork/Join *kk *AKK

CSCI 3366 March 24, 2005

Molecular Dynamics and SPMD — Key Design
Decisions

e Only parallelize computation of non-bonded forces, since that's most of the
computational load.

e Keep a copy of the full force and coordinate arrays on each node.

Slide 9 e Have each UE redundantly update positions and velocities for the atoms (i.e.,

assume it's cheaper to redundantly compute these terms than to do them in
parallel and communicate the results).

e Have each UE compute its contributions to the force array and then combine
(or reduce) the UESs’ contributions into a single global force array copied onto
each UE.

4 Molecular Dynamics and SPMD — Code)

e Slightly more detailed sequential pseudocode in figure 5.7 (p. 134).
o MPI main pseudocode in figure 5.8 (p. 135. Compare to figure 5.7.

e Pseudocode for computation of non-bonded forces in figure 5.9 (p. 136).

Compare to sequential pseudocode in figure 4.4 (p. 72).

Slide 10
e Pseudocode for computation of neighbor list in figure 5.10 (p. 137).. Notice

that we exploit the symmetry resulting from Newton’s third law.

e A remaining decision — how to distribute atoms among UEs. Cyclic
distribution is easy and will probably work okay. If not, could do something
more complex — define “owner-computes filter” — boolean function of ID and
loop iteration.

e Notice that we could do this in OpenMP too.

. J

CSCI 3366 March 24, 2005

Molecular Dynamics and Loop Parallelism — Key
Design Decisions

e Parallelize computationally intensive loop only (the one for non-bonded
forces).

e Figure out what to do about shared variables:

Slide 11 — Make temporary variables used inside loop private.

— Make forces array a reduction variable.

e Decide how to map iterations onto UEs. Dynamic schedule works well if

available (as it is in OpenMP).

o OpenMP-based pseudocode as shown on p. 161 (figure 5.25 and following
pragma omp directives). Compare to pseudocode in figure 4.4 (p. 72).

e | asked a while back about your experiences doing Homework 2, and many
people hadn’t done it then. | think most people have now, or they're close to
being done, so let’s try it again: What did you find
interesting/helpful/difficult/etc.?

Slide 12

