
CSCI 3366 March 31, 2005

Slide 1

Administrivia

• (Preliminary discussion of project requirements.)

Slide 2

Homework 2 Review

• Recall the problem: Imagine a square board with sides of length 2, with a

circle of radius 1 inside. Simulate “throwing darts” at the board and counting

how many fall inside the circle. Use the count to calculate π.

• Easy to break down into N tasks (one per dart) that seem like they should be

independent, except that somehow we have to combine the results at the

end. What problem does this remind you of? next slide . . .



CSCI 3366 March 31, 2005

Slide 3

Homework 2 Review, Continued

• It sounded to me a lot like the numerical integration example — for which we

wrote sample code. All that’s different is what each task is doing (simulating

throwing a dart) and what we do with the sum of the results once we get it.

• So what I had in mind that you would do is apply the same techniques we

used for numerical integration. Most people I talked to about their code did

that, and got programs that more or less produced reasonable answers.

(Anybody remember doing something dramatically different?)

Slide 4

Homework 2 Review, Continued

• Unfortunately, there’s a small problem: The tasks aren’t really independent,

because of how library functions to generate “random numbers” really work.

• Depending on what you did about this problem (ignore it, try to solve it, etc.),

you probably got either not-so-good results or disappointing performance —

or both.



CSCI 3366 March 31, 2005

Slide 5

A Little About Random Numbers

• (Sources: Knuth, Quinn, SPRNG Web site.)

• Many application areas that depend on “random” numbers (whatever we

mean by that) — simulation (of physical phenomena), sampling, numerical

analysis (Monte Carlo methods, e.g.), programming (to generate data, also

some algorithms), etc.

• Early on, people used physical methods (currently still in use in lotteries), and

thought about building hardware to generate “random” results. No good

large-scale solution, though, and besides it seemed useful to be able to

repeat a calculation.

• Hence need for “random number generator” (RNG) — way to generate

“random” sequences of elements from a given set (e.g., integers or doubles).

Tricky topic. Many early researchers got it wrong. Many application writers

aren’t interested in details.

Slide 6

Desirable Properties of RNG — “Randomness”

• Obviously a key goal, if tricky to define. A thought-experiment definition:

Suppose we’re generating integers in the range from 1 through d, and we let

an observer examine as much of the sequence as desired, and ask for a

guess for any other element in the sequence. If the probability of the guess

being right is more than 1/d, the sequence isn’t random.

• Also want uniformity — for each element, equal probability of getting any of

the possible values.

• For some applications, also need to consider “uniformity in higher

dimensions”: Consider treating sequence as sequence of points in 2D, 3D,

etc., space. Are the points spread out evenly?



CSCI 3366 March 31, 2005

Slide 7

Other Desirable Properties of RNG

• Reproducibility. For some applications, not important, or even bad. But for

many others, good to be able to repeat an experiment. Usually meet this

need with “pseudo random number generator” — algorithm that computes

sequence using initial value (seed) and definition of each element in terms of

previous element(s).

• Speed. Probably not a major goal, though, since most applications involve

lots of other calculations.

• Large cycle length. If every element depends only on the one before, once

you get the initial element again what happens? and usually that’s not good.

Slide 8

Parallelizing RNGs

• RNGs are used in some applications that are compute-intensive and thus

appealing candidates for parallelization. How to do this?

• Naive approach — identical calculations in each UE (thread/process), use

same RNG with same seed. Assuming no sharing of internal state, what

happens?

And what happens if there is sharing of internal state? Is the function

“thread-safe”? i.e., if two threads call it at the same time, what happens?

obviously potentially a problem if “state” is saved in global variable hidden

from users.



CSCI 3366 March 31, 2005

Slide 9

Approaches to Parallelizing RNGs

• Central server — use one UE to generate sequence, have it distribute results

to other UEs or let them request them.

Reproducible? Efficient? Other problems?

• Cycle division — split elements of original sequence between UEs, having

each UE generate “its” elements. Two basic schemes — “leapfrog” and “cycle

splitting”.

Reproducible? Efficient? Other problems?

• Parameterization — e.g., “cycle parameterization” exploits property that some

RNGs can generate different cycles depending on seed. Idea is to

“parameterize” algorithm so UEs generate different cycles.

Slide 10

Some Popular RNG Algorithms

• Linear Congruential Generator (LCG).

xn = (axn−1 + b) mod m

m constrains cycle length (period) — usually prime or a power of 2. a and c

must be carefully chosen. Results good overall, but least significant bits

“aren’t very random”, which affects how well they work for generating points in

2D, etc., space.

• Lagged-Fibonacci Generator.

xn = (xn−jopxn−k) mod 2m, j < k

where op is + (additive LFG) or× (multiplicative LFG). Again, k must be

carefully chosen. Must also choose “enough” initial elements.



CSCI 3366 March 31, 2005

Slide 11

RNG Functions

• C library function random and friends: Variant of LFG. Can specify seed,

but internal state apparently hidden.

• C library function drand48 and friends: LCG. Can specify seed. One

variant allows keeping internal state in user-provided buffer.

• Java library class RandomGenerator: LCG. Can specify seed. Not

known whether different instances share internal state, but seems unlikely.

• Or one can write one’s own . . .

Slide 12

Parallel RNG With Distributed Memory

• Thread safety not an issue. But also have no access to shared state, so each

process should probably generate sequence independently.

• “Leapfrog” approach seems attractive.

Naive implementation would just have each process generate whole

sequence and ignore elements it doesn’t want. Good idea?

Knuth includes algorithm for generating just selected elements of LCG, based

on modifying a and c.

• Starting different processes with different seeds seems good. But how do you

guarantee that sequences don’t overlap too much?



CSCI 3366 March 31, 2005

Slide 13

Parallel RNG With Shared Memory

• Thread safety an issue, but have access to shared state, which might be

attractive.

• Adaptation of “central server” idea — use regular library function, but ensure

one-at-a-time access — seems attractive. For us, might be effective,

especially if we generate elements two at a time. Efficient?

• Other approaches similar to distributed-memory case, but require that each

thread have its own “internal state”. Could be a problem.

Slide 14

Possible Homework 2 Revisions

• Improve results (all versions): Experiment with different RNG, and/or

determine what seed(s) give good results.

• Improve performance (OpenMP and Java): Figure out how to get thread

safety without synchronization overhead.

• Improve packaging (Java): Figure out how to avoid ugly global variables.

• Next homework — revise Homework 2, improving as much as you can in all of

these areas. I will write up requirements . . .



CSCI 3366 March 31, 2005

Slide 15

Minute Essay

• Do you have any preliminary ideas about a project you might like to do?


