
CSCI 3366 April 12, 2005

Slide 1

Administrivia

• Deadlines for project proposal, plan extended one class period. (So proposal

is due next Tuesday.)

Slide 2

Review — Organization of Our Pattern Language

• Four “design spaces” corresponding to phases in design:

– Finding Concurrency patterns — how to decompose problems, analyze

decomposition.

– Algorithm Structure patterns — high-level program structures.

– Supporting Structure patterns — program structures (e.g., SPMD,

fork/join), data structures (e.g., shared queue).

– Implementation Mechanisms — no patterns, but generic discussion of

“building blocks” provided by programming environments.

• We’ve looked at the bottom two, and at selected parts of the others. Now look

at “algorithm structure” level in more detail.

CSCI 3366 April 12, 2005

Slide 3

Algorithm Structure Design Space

• Historical note: These are the patterns with the longest history. We started

out trying to identify commonly-used overall structures for parallel programs

(these patterns), and then at some point added the other “design spaces”.

• After much thought, writing, revision, and arguing, we came up with . . .

Slide 4

Algorithm Structure Decision Tree

(Figure 4.2):

������� �

�	��
��� ����	����� ����� � �� � � � ��� ������� ����� � � � � � � ���

����� � ��� ������������� ���! ��� �"�

#�$�%�&(')�*,+.-/*,0 0 $�%�)

����� � ��� ���

#�*21�34-/*�% *,+ + $�+ ' 1�& 5�' 6�' 7"$(*,)�798/:,)�;�<=$�%

>?$ @�<"%�1�' 6,$A5�*,0 *

-B' C�$�+ ')�$

D $:,&A$�0 %�' @(5E$ @�:,&�C":21�' 0 ' :,)

FB6,$�)=0 G H	*21�$ 7I8B:�:,% 7,')�*�0 ' :,)

J ��� �2
��� ���

KL�
 ����� M � �/NPOQ�"��R�� KL�
 ����� M � �/N � �,��� ����� ��SATU����� ��� ���VKL�
 ����� M � �/N9W ��XYKLZ � �,���

CSCI 3366 April 12, 2005

Slide 5

Task Parallelism

• Problem statement:

When the problem is best decomposed into a collection of tasks that can

execute concurrently, how can this concurrency be exploited efficiently?

• Key ideas in solution — managing tasks (getting them all scheduled),

detecting termination, managing any data dependencies.

• Many, many examples, including:

– Molecular dynamics example previously discussed.

– Mandelbrot set computation.

– Branch-and-bound computations: Maintain list of “solution spaces”. At

each step, pick item from list, examine it, and either declare it a solution,

discard it, or divide it into smaller spaces and put them back on list. Tasks

consist of processing items from list.

Slide 6

Divide and Conquer

• Problem statement:

Suppose the problem is formulated using the sequential divide and conquer

strategy. How can the potential concurrency be exploited?

• Key idea in solution — create new task(s) every time we split (sub)problem,

recombine when we merge.

• Examples include mergesort and some non-naive algorithms for N -body

problem.

CSCI 3366 April 12, 2005

Slide 7

Geometric Decomposition

• Problem statement:

How can an algorithm be organized around a data structure that has been

decomposed into concurrently updatable “chunks”?

• Key ideas in solution — distributing data, arranging for needed

communication.

• Probably second most common pattern. Examples include:

– Heat-diffusion problem previously discussed.

– Matrix multiplication using blocks.

Slide 8

Recursive Data

• Problem statement:

Suppose the problem involves an operation on a recursive data structure

(such as a list, tree, or graph) that appears to require sequential processing.

How can operations on these data structures be performed in parallel?

• Key idea in solution — “out of the box” thinking to expose concurrency.

• Probably least-used structure currently (because it doesn’t map well to

current architectures); included for completeness and because examples are

interesting — e.g. “roots in forest” example.

CSCI 3366 April 12, 2005

Slide 9

Pipeline

• Problem statement:

Suppose that the overall computation involves performing a calculation on

many sets of data, where the calculation can be viewed in terms of data

flowing through a sequence of stages. How can the potential concurrency be

exploited?

• Key idea in solution — set up “assembly line” (pipeline).

• Canonical example is signal/image processing application, where you have a

sequence of incoming images and want to apply same sequence of

transformations to each one.

Slide 10

Event-Based Coordination

• Problem statement:

Suppose the application can be decomposed into groups of

semi-independent tasks interacting in an irregular fashion. The interaction is

determined by the flow of data between them which implies ordering

constraints between the tasks. How can these tasks and their interaction be

implemented so they can execute concurrently?

• Key idea in solution — structure computation in terms of semi-independent

entities, interacting via “events”.

• Canonical example is discrete event simulation — simulating many

semi-independent entities that interact in irregular/unpredictable ways.

CSCI 3366 April 12, 2005

Slide 11

Minute Essay

• None — sign in.

