
CSCI 3366 (Introduction to Parallel and Distributed Processing),
Spring 2005

Guidelines and Requirements for Projects

1 Overview

One of the requirements for this course is completion of a project. You may work individually
or with one other person in the class. The project will count as 100 points of your total grade.
It should be more ambitious than one of the homeworks, and if two people work together, the
project should be about twice as ambitious as a solo project. All projects must be approved in
advance by the instructor, who will be the final arbiter of whether the topic and level of difficulty
are appropriate.

2 Suggestions for topics

Possible project topics include the following, or you may propose something else. If your project
involves writing code, you may use any language/library that can be run on the department’s
network of Linux machines.

2.1 Parallel applications

Your project could be the design and implementation of a non-trivial parallel application. There
are many, many possibilities here, mostly falling into one of two categories:

• Applications that use multiple processes/threads to improve performance. The textbook by
Quinn has problems at the end of each chapter; those might be a good source of ideas. You
should plan to collect at least minimal performance data for your application.

• Applications that use multiple processes/threads because they’re inherently parallel. This
category includes what are often referred to as “classical synchronization problems” (e.g.,
the bounded-buffer problem discussed in class). You should plan to demonstrate as well as
possible that your application really solves the problem (e.g., for the bounded-buffer problem
a process trying to read from an empty buffer waits).

2.2 Performance experiments

Your project can consist of a set of experiments designed to measure something about a parallel-
programming platform or platforms, such as one of the following.

• Compare different languages/libraries, e.g., MPI versus Java RMI. For example, you might
implement the same algorithm using two or more languages/libraries and compare the two
implementations, with regard to both performance and ease of programming. Cross-language
comparisons might compare both absolute performance (different implementations, same
number of processes/threads) and scalability (different numbers of processes/threads, same
implementation).

1



CSCI 3366 Guidelines and Requirements for Projects Spring 2005

• Compare different algorithms. For example, you might compare the performance of some of
the MPI collective-communication library functions (MPI Bcast(), etc.) with user-written
functions to accomplish the same things.

• Measure characteristics of the hardware/software platform. For example, you might measure
the average time required to send a message and how it varies (if at all) depending on message
length, identities of sending and receiving process, processor speed, etc.

3 What to turn in and when

Milestone Points When due Description

Project proposal 5 points April 19 at 5pm A brief description of your project topic,
no more than a paragraph, in the form
of a short e-mail to the instructor.
(Plain text is preferred over proprietary
word-processor formats.)

Project status re-
port

5 points April 28 at 5pm A brief report on progress to date,
describing any problems or questions,
again in the form of a short e-mail to
the instructor.

Final written report 40 points May 10 at 5pm (not
accepted late)

A brief report (no more than five pages
should be required, and two or three
will suffice for many projects) describ-
ing your project’s goals and outcome,
in hard-copy form. It should address
the following topics and include biblio-
graphic references as appropriate. (1)
Describe what problem you are solv-
ing and how (i.e., recap your project
plan, including the design of your appli-
cation, experiments, etc.). (2) Discuss
your results, including graphs and ta-
bles as appropriate (e.g., to show per-
formance as a function of number of
processes/threads). (3) Describe any
unusual or interesting difficulties you
encountered, and/or what you learned
from doing the project.

Source code 50 points May 10 at 5pm (not
accepted late)

Complete working source code for any
program(s) you wrote as part of your
project, submitted electronically as for
homework. Be sure your code is read-
able and well-documented.

2


