CSCI 3366 August 25, 2006

Administrivia

e One purpose of the syllabus is to spell out policies, especially about:
— Course requirements and grading.
— Exam or other dates.
— Late work.
Slide 1 — Academic integrity.
o Most other information will be on the Web, either on my home page (office
hours) or the course Web page(s).
A request: If you spot something wrong with course material on the Web,

please let me know!

More Administrivia

e Part of my job is to answer your questions outside class, so if you need help,
please ask! in person or by e-mail or phone.

e Some of my office hours are designated as “open lab”. At those times | will be
in one of the labs (probably HAS 329) ready to answer questions.

Slide 2 Current plan:

— Tuesdays 2pm to 4pm.

— Wednesdays 3:30pm to 5:30pm.

(Will probably be changed based on what will work for students in all/most

classes.)




CSCI 3366 August 25, 2006

More Administrivia

e Why are we using “my” book when there are books that are more
textbook-like? because (1) | think it emphasizes the right things, which many
textbooks don’t, and (2) learning from a not-really-a-textbook and other
resources should be good practice for whatever you do after you graduate.

Slide 3 (I don’t actually think I'm going to be able to retire on the extra royalty income

— but it might be enough to finance a trip to Java City for the class?)

Also — if you spot errors, even typos, please let me know. The first person to
report any legitimate error | don’t know about is eligible for extra-credit points.

What is Parallel/Distributed Computing?

o Some computational jobs are just too much for one processor — no way to
get them done in reasonable time.

e For jobs done by people, what do you do when the job is too much for one
person?

Slide 4




CSCI 3366

Slide 5

Slide 6

August 25, 2006

\
What is Parallel/Distributed Computing?

e For jobs done by people, if too much for one person you assign a team — but
you have to figure out
— How to divide up work among team members.
— How to coordinate activities of team members.

o Same idea applies to computing — if too much for one processor, use multiple
processors. Issues are similar — how to divide up work, how to coordinate.

Simple Examples

e “People job” examples:

— Digging a hole.

— Building a house.

— Baby.

What do you notice about the last one in particular?
o Computer examples:

— Adding up a lot of numbers.

— Computing Fibonacci numbers.

But these don’t seem too “big” ...




CSCI 3366 August 25, 2006

How Much Calculating is “A Lot"?

o Examples from computational biology — how many operations per second
are needed to get things done fast enough to be useful?:

— Sequence the genome — 1012 ops/second (500 2-Gigahertz processors).

— Protein/protein interactions — 1014 ops/second (25,000 4-Gigahertz
Slide 7 processors).
— Simulating whole-body response to a drug — 1016 operations/second

(1,250,000 8-Gigahertz processors).

® (Source — Intel’s former life sciences industry manager.)

How Much Calculating is “A Lot"?

e Simplified example — weather simulation:

Divide earth’s surface into 1-square-km cells (about 5 x 108 of them);
examine from surface to 14 km out. Gives 7.5 x 10° 3D cells.

Typically need to update least five variables per cell (temperature, humidity,
Slide 8 wind (3D), etc.). So, 37.5 x 10° updates.
To model 24 hours in 1-minute chunks: 86400 minutes. Total of 3.24 x 101°

updates.

Optimistically assuming 102 updates per second, 3.24 x 10% seconds —
900 hours.

e (Adapted from example by Dr. Eggen.)




CSCI 3366 August 25, 2006

What Are Some Other Hard Problems?

e Crash simulation / structural analysis.
e QOil exploration.
e Explosion simulations (why Los Alamos is interested).

e Astrophysics simulations (e.g,, Dr. Lewis’s work on Saturn’s rings).

Slide 9
e Fluid dynamics.
e “Rendering” for computer-generated animation.
e And many others ...
The Need for Speed
e Solving the same problems faster — reducing wall-clock time.
e Solving bigger problems.
e Solving problems more exactly — to get better answers, need more detail,
hence more processing.
Slide 10




CSCI 3366 August 25, 2006

4 )

Can’t You Just Get a Faster Computer?

e Up to a point — yes. Moore’s law predicts that processor speed and memory
both double about every 1.5 years. Over 30 years, that’s a factor of about a
million!

e But...

Slide 11 — As you know — however fast processors are, it's never fast enough. Also,
i

faster is more expensive, and price/performance is not constant.

— Eventually we’ll run into physical limitations on hardware — speed of light
limits how fast we can move data along wires (in copper, light moves 9 cm
in a nanosecond — two “cycles” for a 2GHz processor), other factors limit
how small we can make chips.

In fact “eventually” may be “now” given recent trends in chips.

— Maybe we can switch to biological computers or quantum computers, but
those are pretty big paradigm shifts ...

“The Answer” — Parallel Computing

e Analogous to “team of people” idea — if one processor isn’'t fast enough, use
more than one.

e Also useful when there’s something “inherently parallel” about the problem —
e.g., operating systems, GUI-based applications, etc.

Slide 12 e http://www.top500.org tracks fastest computers; for many years

now all have been “massively parallel”.




CSCI 3366 August 25, 2006

But | Don’t Want To Solve Problems Like Those!

e What if you aren’t interested in solving problems like these “grand challenge”
problems, Is there still a reason to be interested in parallel computing?

e The hardware is there, and it's becoming mainstream — multicore chips,
hyperthreading, etc. (The Intel person says “the chip makers can put more
Slide 13 and more transistors on a chip, and this is the best way to use that.”)

To get best use of it for single applications, will probably need parallelism.

e Also, for some applications, thinking of them as parallel/multithreaded can
lead to a solution that lets you do something useful while waiting for I/O, etc.

About the Course

e Can think of this course as the equivalent of PAD | for parallel (and to some
extent concurrent and distributed) programming. As with PAD |, many things

to learn all at once:

— A new “box of tools” — or several boxes of tools (different
Slide 14 languages/libraries/paradigms). Must learn syntax/functions, plus tools
such as compilers and runtime systems.

— How to use the stuff in the box of tools to solve interesting problems —
from low-level “what is this syntax good for?” to algorithm design.

— How to think about “does it work?”
— How to think about “how fast is it?”

e Also as with PAD I, the idea will be to teach a mix of technical skills and basic
concepts, with emphasis on learning by doing.

. J




CSCI 3366 August 25, 2006

e What are your goals for this course?
® Are you reasonably comfortable with Java and C? How about C++7?

e Do you have any experience already with parallel or multithreaded

programming? If so, tell me about it, briefly.

Slide 15
o Will it be a problem for you if | assign homework that will be hard to do without

access to our Linux lab machines?

e Anything else you want to tell me? about the course, about what you did this

summer ...




