
CSCI 3366 August 30, 2006

Slide 1

Administrivia

• A reminder: Please do not reboot the machines in this room (HAS 340).
People depend on their being available for remote access.

Slide 2

Recap — Current Hardware for Parallel Programming

• One category — multiple CPUs sharing access to a common memory.

• Another category — multiple CPUs, each with separate memory,
communicating over interconnection network.



CSCI 3366 August 30, 2006

Slide 3

Recap — Programming Models

• Shared-memory model — concurrently-executing threads sharing address
space. Various ways to communicate / synchronize.

• Distributed-memory model — concurrently-executing processes, each with
separate address space, communicating by sending / receiving messages.

Slide 4

What Programming Languages Support This?,
Continued

• A regular sequential language with a parallelizing compiler: Attractive, but
such compilers are not easy.

• A language designed to support parallel programming (Java, Ada, PCN):
Perhaps the most expressive, but more work for programmers and
implementers.

• A regular sequential language plus calls to parallel library functions (PVM,
MPI, Pthreads): More familiar for users, easier to implement.

• A regular sequential language with some added features (CC++, OpenMP):
Also familiar for users, can be difficult to implement.



CSCI 3366 August 30, 2006

Slide 5

Parallel Programming Environments

• By “programming environments” we mean languages / libraries / extensions.
There are many! (Table 2.1 in book has a list — and we might have missed a
few.)

• For our book we chose one of each:

– MPI (library) because it’s something of a standard for message-passing
programming.

– OpenMP (language extension) because it’s emerging as a standard for
shared-memory programming.

– Java because it’s widely available and might be many people’s first
exposure to parallel programming.

• Other popular programming environments — POSIX threads (Pthreads),
Win32 API, PVM, . . .

Slide 6

Sketch of Parallel Algorithm Development

• Start with understanding of problem to be solved / application.

• Decompose computation into “tasks” — snippets of sequential code that you
might be able to execute concurrently.

• Analyze tasks and data — how do tasks depend on each other? what data do
they access (local to task and shared)?

(Or start with decomposition of data and infer tasks from that.)

• Plan how to map tasks onto “units of execution” (threads/processes) and
coordinate their execution. Also plan how to map these onto “processing
elements”.

• Translate this design into code.

• Our book organizes all of this into four “design spaces”, corresponding to (we
think) steps in program design / development.



CSCI 3366 August 30, 2006

Slide 7

A Few Words About Performance

• If the point is to “make the program run faster” — can we quantify that?

• Sure. Several ways to do that. One is “speedup” —

S(P ) =
Ttotal (1)

Ttotal (P )

• What’s the best possible value you can imagine for S(P )?

Slide 8

Performance, Continued

• Best possible value for S(P )? would seem to be P , right?

• Can you think of circumstances in which you could do better (“superlinear
speedup”)?



CSCI 3366 August 30, 2006

Slide 9

Performance, Continued

• “Superlinear speedup” could happen if dividing up the computation among
processors means more of the program’s code/data can fit into memory, or
cache. Could also happen in searches, if you can stop after finding one
solution.

• What’s the worst value you can imagine for S(P )?

Slide 10

Performance, Continued

• Worst possible value would seem to be 1, right?

• Can you think of circumstances in which you’d do worse? (Hint: What do you
know so far about how the parts of the program running on different
cores/processors/machines interact?)



CSCI 3366 August 30, 2006

Slide 11

Parallel Overhead

• Many reasons why a “real” parallel program might be slower than hoped for —
even, possibly, slower than the sequential program!

• For shared-memory programming — if we need to synchronize use of shared
variables, that takes time.

• For message-passing programming — sending messages takes time.
Typically time to send a message involves a fixed cost plus a per-byte cost.

(Sometimes can speed things up by “overlapping computation and
communication”.)

• Also, “poor load balance” may slow things down.

• (And we’re not even mentioning what happens if you don’t have exclusive
access to all processors.)

Slide 12

Performance, Continued

• Even without overhead, though, why wouldn’t we always get “perfect”
speedup (P )?



CSCI 3366 August 30, 2006

Slide 13

Amdahl’s Law

• And most “real programs” have some parts that have to be done sequentially.
Gene Amdahl (principal architect of early IBM mainframe(s)) argued that this
limits speedup — “Amdahl’s Law”:

If γ is the “serial fraction”, speedup on P processors is (at best — this
ignores overhead)

S(P ) =
1

γ + 1−γ
P

and as P increase, this approaches 1
γ — upper bound on speedup.

(Details of math in chapter 2.)

Slide 14

What’s Next — Nuts and Bolts

• So we can start writing programs as soon as possible, next topic will be a fast
tour through the three programming environments we will use for writing
programs.



CSCI 3366 August 30, 2006

Slide 15

Minute Essay

• None — sign in.


