
CSCI 3366 September 1, 2006

Slide 1

Administrivia

• Open lab hours announced via e-mail. Updated office hours posted on my

Web page, etc.

• Homework 1 coming soon (by Wednesday).

• A comment about the 8/28 minute essay (about CSCI 2321): No, it’s not a

prerequisite. Most people said “no”.

Slide 2

Basics of Multithreaded (Shared-Memory Parallel)
Programming

• Multithreaded programs (in contrast to message-passing programs, as we’ll

see) typically start out with one “thread” and then create others as they

execute.

• All threads have access to the same address space, so variables can be

shared. Avoids need to communicate data explicitly, but means sometimes

we need to “synchronize” among threads, e.g., to make sure only thread at a

time can access a particular variable.



CSCI 3366 September 1, 2006

Slide 3

OpenMP

• Early work on message-passing programming resulted in many competing

programming environments — but eventually, MPI emerged as a standard.

• Similarly, many different programming environments for shared-memory

programming, but OpenMP may be emerging as a standard.

• In both cases, idea was to come up with a single standard, then allow many

implementations. For MPI, standard defines concepts and library. For

OpenMP, standard defines concepts, library, and compiler directives.

• First release 1997 (for Fortran, followed in 1998 by version for C/C++).

• Several production-quality commercial compilers available. Up until very

recently, free compilers were, um, “research software” or in work. Latest

versions of GNU compilers, though, offer support. !!

Slide 4

What’s an OpenMP Program Like?

• Fork/join model — “master thread” spawns a “team of threads”, which execute

in parallel until done, then rejoin main thread. Can do this once in program, or

multiple times.

• Source code in C/C++/Fortran, with OpenMP compiler directives (#pragma

— ignored if compiling with a compiler that doesn’t support OpenMP) and

(possibly) calls to OpenMP functions.

Compiler must translate compiler directives into calls to appropriate functions

(to start threads, wait for them to finish, etc.)

• A plus — can start with sequential program, add parallelism incrementally —

usually by finding most time-consuming loops and splitting them among

threads.

• Number of threads controlled by environment variable (roughly analogous to

“number of processes” parameter for mpirun), or from within program.



CSCI 3366 September 1, 2006

Slide 5

Simple Example / Compiling and Executing

• Look at simple program — hello.c on sample programs page.

• Compile with compiler supporting OpenMP.

• Execute like regular program. Can set environment variable

OMP NUM THREADS to specify number of threads. Default value seems to

be one thread per processor.

Slide 6

How Do Threads Interact?

• With MPI, processes don’t share an address space, so to communicate they

must use messages. With OpenMP, threads do share an address space, so

they communicate by sharing variables.

• Sharing variables is more convenient, may seem more natural.

• However, “race conditions” are possible — program’s outcome depends on

scheduling of threads, often giving wrong results.

What to do? use synchronization to control access to shared variables.

Works, but takes (execution) time, so good performance depends on using it

wisely.



CSCI 3366 September 1, 2006

Slide 7

OpenMP Constructs — Basic Categories

• Parallel regions (“replicate the following in all threads”).

• Worksharing (“divide the following among threads”).

• Data environment (shared variables versus per-thread variables).

• Synchronization.

• Runtime functions / environment variables.

Slide 8

Parallel Regions in OpenMP

• #pragma omp parallel tells compiler to do following block in all

threads (starting team of threads if necessary). Execution doesn’t proceed in

main thread until all are done. Example — “hello world” shown earlier.

• Block must be a “structured block” — block with one point of entry (at top) and

one point of exit (at bottom). In C/C++, this is a statement or statements

enclosed in brackets (with no gotos into / out of block).



CSCI 3366 September 1, 2006

Slide 9

Worksharing Constructs in OpenMP

• #pragma omp parallel for tells compiler to split iterations of

following for loop among threads. By default, main thread doesn’t continue

until all are done, but can override that (might be useful if you have two

consecutive such loops).

• How loop iterations are mapped onto threads — controlled by schedule

clause. More about this later.

• To make different threads do different things — #pragma parallel

sections, etc. (More in standard.)

Slide 10

A Little About Variables in OpenMP

• Most variables are shared by default, including any global variables.

• Some things, though, aren’t — variables within a statement block, stack

(local) variables in subprograms called from parallel region.

• Can specify that each thread gets its own copy with private clause.

• Can specify that each thread gets its own copy, and copies are combined at

the end, with reduction clause.



CSCI 3366 September 1, 2006

Slide 11

Example — Numerical Integration

• Compute π by integrating
∫ 1

0

4

1+x
2 dx.

• Do this numerically by approximating area under curve by many small

rectangles, computing their area, adding results.

• Sequential program fairly straightforward. (num-int-seq.c on “sample

programs” page).

• “Parallelize” how? (num-int-par.c on “sample programs” page).

Slide 12

Minute Essay

• None — sign in.


