
CSCI 3366 September 11, 2006

Slide 1

Administrivia

• Please do not reboot the machines in HAS 340! If a previous user has left a

machine in the “locked by screensaver” state, you can bail out by pressing

control-alt-backspace to restart X (the graphical subsystem) without

disturbing background processes.

• Are your prox cards giving you access to the labs? Supposedly all known

problems have been resolved.

• Homework 1 on Web; first due date is next Monday.

Slide 2

Multithreaded Programming with OpenMP — Review

• Basic idea — fork/join programming model, all threads share memory.

• Can duplicate code in all threads (parallel directive), split a loop among

threads (parallel for), have different threads do different things

(parallel sections).

More details in specification — can combine these in various ways.

Various ways to assign loop iterations to threads — more about that shortly.



CSCI 3366 September 11, 2006

Slide 3

Variables in OpenMP

• Most variables are shared by default.

Exceptions are variables local to a block within a parallel region, stack (local)

variables in subprograms called from parallel region.

• To give each thread a separate copy — private clause.

firstprivate and lastprivate can be used to start/end with

shared value.

• To create a partial result in each thread and then combine (“reduce”) —

reduction clause. Operations include sum, product, and/or. No max or

min in C/C++.

• (Review numerical integration program.)

Slide 4

Assigning Work to Threads — schedule clause

• static (with optional chunk size) — divide iterations into fixed-size blocks,

distribute evenly among threads.

• dynamic (with optional chunk size) — queue of iterations, threads grab

blocks of iterations until all done.

• guided (with optional chunk size) — like dynamic, but with decreasing

blocks of iterations.

• runtime — get from OMP SCHEDULE environment variable.



CSCI 3366 September 11, 2006

Slide 5

Intermezzo — Environment Variables (in bash)

• To set environment variable FOO for the rest of the session:

export FOO=fooval

(To set every time you log in, put in .bash profile.)

• To run bar with a value for FOO:

FOO=fooval bar

Slide 6

Library Functions

• omp get num threads, omp set num threads,

omp get thread num — as in examples and appendix.

• omp get wtime — as in examples and appendix.

• Functions to do locking — more about them shortly.

• Functions to do other things — in specification.



CSCI 3366 September 11, 2006

Slide 7

Synchronization Constructs

• critical — only one thread at a time executes this block of code.

(Example — synch-2.c on sample programs page.)

• barrier — threads wait here until all have arrived. Implicit barrier at end of

parallel region.

• single — only one thread executes this block.

• Several others — atomic, flush, ordered, master. More about

them in the specification.

Slide 8

Locks

• omp lock t — declares a lock variable.

• omp init lock, omp destroy lock — create and destroy.

• omp set lock — acquire lock (wait if necessary).

• omp unset lock — release lock.

• Other functions described in specification.

• Example — synch-3.c on sample programs page.



CSCI 3366 September 11, 2006

Slide 9

Homework 1 Background

• In Homework 1, you will make a first pass at writing a set of programs (one

using OpenMP, one using MPI, and one using Java) to solve the following

problem. (We’ll talk more about it in class after you’ve tried it.)

• We talked about computing π using numerical integration. Another interesting

(surprising?) approach uses a “Monte Carlo” method:

Consider a square with sides of length 2 (any unit you like), enclosing a circle

of radius 1.

Approximate the area of the circle by “throwing darts” at the square, counting

how many fall within the circle, and calculating the ratio of those within the

circle to the total number.

Model “throwing darts” by using pseudorandom number generator to

generate coordinates of a point.

Slide 10

Minute Essay

• Running the numerical integration example with different numbers of threads

gives different results. Why do you think that happens?



CSCI 3366 September 11, 2006

Slide 11

Minute Essay Answer

• The order in which the partial results (produced by the iterations of the loop to

compute areas of rectangles) are added together depends on the number of

threads and the scheduling — and floating-point arithmetic is not associative

(!).


