
CSCI 3366 September 13, 2006

Slide 1

Administrivia

• (None.)

Slide 2

MPI — the Message Passing Interface

• Idea was to come up with a single standard (concepts and library) for

message-passing programs, then allow many implementations. Similar to

language standards (C, C++, etc.). Good for portability.

• MPI Forum — international consortium — began work in 1992. MPI 1.1 and

MPI 2.0 standards defined. Huge! 1.1 specification is 500+ pages.

• Reference implementation — MPICH (Argonne National Lab). Another

popular and free implementation (installed here) — LAM/MPI (Local Area

Multicomputer).



CSCI 3366 September 13, 2006

Slide 3

What’s an MPI Program Like?

• “SPMD” (Single Program, Multiple Data) model — many processes, all

running the same source code, but each with its own memory space and

each with a different ID. Could take different paths through the code

depending on ID.

• Source code in C/C++/Fortran, with calls to MPI library functions.

• How programs get started isn’t specified by the standard! (for

historical/political reasons — some early target platforms were very

restrictive, would not have supported what academic-CS types wanted).

• (Compare and contrast all of the above with OpenMP.)

Slide 4

What’s in the MPI Library?

• Setup and bookkeeping — initialization, cleanup, environment query, etc.

• Data management — pack/unpack, derived data types.

• Point-to-point communication — several varieties, differing mostly in how

much synchronization.

• Collective operations — e.g., broadcast.



CSCI 3366 September 13, 2006

Slide 5

MPI “Communicators”

• (One more thing to define before we can write simple code.)

• MPI allows grouping processes; group plus associated context called a

“communicator”. Makes it easier to write “safe” parallel libraries.

• Predefined communicator MPI COMM WORLD includes all processes.

Programmers can create additional ones.

Slide 6

Simple Examples / Compiling and Executing

• Look at sample program hello.c. (All sample programs from class should

be on the Web, linked from course “sample programs” page, with short

instructions on how to use MPI.)

• We’ll use the LAM/MPI that comes with FC5. There should be man pages for

all commands and functions.

• Compile with mpicc.

• Before running, must “boot” (lamboot command) — start MPI background

processes on all machines to be used.

• Execute with mpirun.

• Shut down with lamhalt. (Otherwise background processes continues to

run.)



CSCI 3366 September 13, 2006

Slide 7

Simple (Blocking) Point-to-Point Communication in MPI

• Send with MPI Send — returns as soon as data has been copied to system

buffer, buffer in program can be reused.

• Receive with MPI Recv — waits until message has been received.

• Can use “tags” to distinguish between kinds of messages. Can receive

selectively or not (MPI ANY TAG). Received tag is in returned

MPI Status variable (e.g., status.MPI TAG).

• Can receive from specific sender or from any sender. (MPI ANY SOURCE).

Sender is in returned MPI Status variable (e.g.,

status.MPI SOURCE).

• For MPI Recv, “length” parameter specifies buffer length. Use

MPI Get count to get actual count.

• Look at sample program send-recv.c.

Slide 8

Not-So-Simple Point-to-Point Communication in MPI

• For not-too-long messages and when readability is more important than

performance, MPI Send and MPI Recv are probably fine.

• If messages are long, however, buffering can be a problem, and can even

lead to deadlock. Also, sometimes it’s nice to be able to overlap computation

and communication.

• Therefore, MPI offers several other kinds of send/receive functions —

“synchronous” (blocks both sender and receiver until communication can take

place), “non-blocking” (doesn’t block at all, program must later test/wait for

communication to take place).

(More about these later.)



CSCI 3366 September 13, 2006

Slide 9

Collective Communication in MPI

• “Collective communication” operation — one that involves many processes

(typically all, or all in MPI “communicator”).

• Could implement using point-to-point message passing, but some operations

are common enough to be library functions — broadcast (MPI Bcast),

“reduction” (MPI Reduce), etc.

Slide 10

Minute Essay

• If you add the following lines to sample program send-recv.c, right after

the call to printf() for process 0

buff[0] = 30;

buff[1] = 40;

what does process 1 print?



CSCI 3366 September 13, 2006

Slide 11

Minute Essay Answer

• The same thing as before — the old data has already been sent to process 1

(or at least copied to a system buffer somewhere), so the change doesn’t

affect what happens in process 1.


