
CSCI 3366 September 20, 2006

Slide 1

Administrivia

• Reminder: Second installment of Homework 1 (MPI program) due Friday.

Slide 2

Minute Essay From Last Lecture

• (Review question.)

• Problems include poor performance and even deadlock.



CSCI 3366 September 20, 2006

Slide 3

Synchronization in Java, Recap

• Simplest way to ensure one-at-a-time access to shared variables is to use

synchronized keyword.

• Review HelloSynch*.java sample programs . . .

Slide 4

Numerical Integration Example, Revisited

• How to parallelize using Java? well, first must rewrite in Java

(NumIntSeq.java on sample programs page).

• Now rewrite to use multiple threads (NumIntPar.java on sample

programs page) . . .



CSCI 3366 September 20, 2006

Slide 5

Synchronization in Java, Continued

• synchronized methods/blocks can be used to ensure that only one

thread at a time accesses some shared variable.

• For more complex synchronization problems, can use wait and notify

(or notifyAll):

wait suspends executing thread (adds to “wait set”).

notify wakes up one thread from the wait set. notifyAll wakes up all

threads. Waked-up thread(s) then compete to reacquire lock and continue

execution.

Can only be done from within synchronized method/block.

Typical idiom — loop to check condition, wait.

• Example — bounded buffer class (BoundedBuffer.java and

TestBoundedBuffer.java on sample programs page).

Slide 6

Minute Essay

• In the bounded buffer example, what do you think would happen if we

replaced notifyAll with notify? (Would the program always work,

never work, sometimes work? if “sometimes”, when?)



CSCI 3366 September 20, 2006

Slide 7

Minute Essay Answer

• It might not always work. notify wakes up a waiting process, but no

control over which one. Probably would be okay for this algorithm (since it

seems unlikely that both producers and consumers would be waiting), but

notifyAll seems like easiest way to be sure of correctness. (Could this

be inefficient? maybe, but as Knuth says — “premature optimization is the

root of all evil.”)


