CSCI 3366

Slide 1

Slide 2

September 22, 2006

o Reminder: Third installment of Homework 1 (MPI program) due Wednesday.

Administrivia

-

A Few Words About Design Patterns

e |dea originated with architect Christopher Alexander (first book 1977). Briefly
— look for problems that have to be solved over and over, and try to come up
with “expert” solution, write it in a form accessible to others. Usually this
means adopting “pattern format” to use for all patterns. Characteristics of a

good pattern:

— Neat balancing of competing “forces” (tradeoffs).

— Name either tells you what it's about, or is a good addition to vocabulary.

— “Aha!” aspect.

e First used in CS in OOD/OOP, about 1987. Really started to take off in OO
community with “Gang of Four” book (Gamma, Helms, Johnson, and

Vlissides; 1995). Now can find people writing patterns in many, many areas.

e To give you the idea — look at some simple patterns (links on course “Useful

links” page).

~N

J

CSCI 3366 September 22, 2006

“A Pattern Language for Parallel Programming”?

e Goal of our book (and preceding work) — apply this idea in parallel
computing.

e We started out looking for patterns representing high-level structures for

parallel programs, thinking there might be a dozen of them.

Slide 3 e At some point we realized we also wanted to talk about how you get from the

original problem to one of these structures — i.e., how do expert parallel
programmers think about how to decompose a problem, etc.? and also about
commonly-occurring data structures and program structures, and how to map

high-level designs/structures into real programming environments.

e Eventually — four-layer “pattern language”. (Notice that “pattern language”
connotes common vocabulary more than grammatical structure. Not a

programming language!)

Overall Organization of Our Pattern Language

e Four “design spaces” corresponding to phases in design.

— Finding Concurrency — how to decompose problems, analyze

decomposition.
— Algorithm Structure — high-level program structures.
Slide 4 — Supporting Structure — program structures, data structures.
— Implementation Mechanisms — generic discussion of programming

environment “building blocks”.

e |dea is that you start at the top, work your way down, possibly with some
backtracking.

CSCI 3366 September 22, 2006

Finding Concurrency — Preview

o Decomposition patterns (Task Decomposition, Data Decomposition): Break

problem into tasks that maybe can execute concurrently.

e Dependency analysis patterns (Group Tasks, Order Tasks, Data Sharing):
Organize tasks into groups, analyze dependencies among them.

Slide 5 e Design Evaluation: Review what you have so far, possibly backtrack.

Algorithm Structures — Preview

e Task Parallelism — decompose problem into lots of tasks, independent or

nearly so. Example: numerical integration.

e Divide and Conquer — decompose recursively as in divide-and-conquer
algorithms. Examples: quicksort, mergesort.

Slide 6 o Geometric Decomposition — decompose based on data (by rows, by

columns, etc.). Example: Mesh-based computation.

e Recursive Data — rethink computation to expose unexpected concurrency.

Ignore for now.
e Pipeline — decompose based on assembly-line analogy.

e Event-Based Coordination — decompose problem into entities interacting
asynchronously.

CSCI 3366 September 22, 2006

Supporting Structures — Preview

e Program structure patterns:
— SPMD (Single Program, Multiple Data) — “like an MPI program”.
— Loop Parallelism — “like an OpenMP program”.

— Master/Worker — like the name suggests.

Slide 7 — Fork/Join — when none of the others fits.
e Data structure patterns:
— Shared Data — generic advice for dealing with data dependencies.
— Shared Queue — example of applying Shared Data).
— Distributed Array.
Implementation Mechanisms — Preview
e Generic discussion of “building blocks” for parallel programming — analogous
to assignment, if/then/else, loops in procedural programming languages.
(Can think of this as “what basic questions do | ask about a new parallel
programming environment?”)
Slide 8 e Three basic categories:

— UE management.
— Synchronization.

— Communication.

CSCI 3366 September 22, 2006

4)

Example Applications

e Before starting on Finding Concurrency patterns — two example applications

to be used as running examples.

Slide 9

Example — Molecular Dynamics

e Goal is to simulate what happens to large molecule. Of interest, e.g., in

modeling how a drug interacts with a protein.

e Approach is to treat molecule as a collection of balls (atoms) connected by
springs (chemical bonds). Then do “standard time-stepping” — divide time
Slide 10 into discrete steps, and at each step use classical mechanics to figure out

new positions for atoms based on current positions and forces among them.

In more details . ..

CSCI 3366 September 22, 2006

Molecular Dynamics — Computation

e At each time step:

— Compute forces (vibrational and rotational) on atoms caused by chemical
bonds between them. Short-range interaction, so not too much

computation here.

Compute forces on atoms caused by their electrical charges. Potentially

Slide 11
must consider all pairs of atoms, so lots of computation here.

Use forces to update atoms’ positions and velocities.

— Compute other physical properties of the system — e.g., energies.

e To reduce the computational load, can limit computation of
electrical-charge-induced forces to atoms that are “close”. To do this,
calculate for each atom a list of “neighbors”. If time steps are short, atoms

don’t move much, and we don't have to do this every step.

4)

Molecular Dynamics Pseudocode

Int const N // nunber of atoms
Array of Real :: atons (3,N) //3D coordinates
Array of Real :: velocities (3,N //velocity vector
Array of Real :: forces (3,N) //force in each dinmension
Array of List :: neighbors(N) //atonms in cutoff volune
Slide 12
| oop over tine steps

vi brational _forces (N, atons, forces)

rotational _forces (N, atons, forces)

nei ghbor _Iist (N, atons, neighbors)

non_bonded _forces (N, atons, neighbors, forces)

updat e_at om posi tions_and_vel ocities

(N, atons, velocities, forces)

physi cal _properties (... Lots of stuff ...)

end | oop

CSCI 3366 September 22, 2006

e Tell me a little about the strategy you think might work for parallelizing this

application (molecular dynamics).

Slide 13

