
CSCI 3366 October 4, 2006

Slide 1

Administrivia

• (None.)

Slide 2

Minute Essay From Previous Lecture (9/29)

• What people found interesting about Homework 1:

– Comparison of OpenMP, MPI, Java.

– How using more UEs stops helping at some point.

– How accuracy sometimes decreased with more UEs.

– Setting up for passwordless ssh.

• What people found difficult about Homework 1:

– Getting into the right mindset (but not very difficult).

– Getting good time results.

– Getting familiar with OpenMP / MPI / Java.

– Details of setting up for MPI.



CSCI 3366 October 4, 2006

Slide 3

Homework 1 Revisited — Sequential Programs

• First step is probably to run sequential programs a few times. (Using what

machines? what parameters?)

• (Look at some results I generated . . . )

• Do results vary depending on seed? (Yes.)

• Are results better for more samples? (Sometimes.)

• Are results the same for C and Java programs? (No.)

• Does execution time make sense — fairly consistent from run to run, scales

with number of samples? from machine to machine? (Yes.)

Slide 4

Homework 1 Revisited — Parallel Programs

• My idea was that you would do something very similar to what we did with

numerical integration:

– Consider each “throw a dart” operation as a task.

– Divide tasks among UEs, with each of them computing a local count.

– Combine local counts at the end, and then compute pi.

(Most people did this, pretty much, with a few variations.)

• Recall that for numerical integration we got different results for different

numbers of UEs because floating-point addition is not associative. Will that

happen here? (It shouldn’t!)



CSCI 3366 October 4, 2006

Slide 5

Homework 1 Revisited — Parallel Programs, Continued

• Probably should repeat sequential-program experiments, right? with same

inputs, but varying numbers of UEs. (How many UEs should we use?)

• And if we do that, results can be — “interesting”?

– Different answers depending on number of UEs. (How can that be? Is the

answer the same for OpenMP, Java, and MPI?)

– Disappointing performance (but maybe not for all three versions?)

• What’s going on? well, maybe we should step back and talk about

“generating random numbers” . . .

Slide 6

A Little About Random Numbers

• (Canonical reference — discussion in volume 2 of Knuth’s The Art of

Computer Programming. Very mathematical. Other references may be

easier.)

• Many application areas that depend on “random” numbers (whatever we

mean by that) — simulation (of physical phenomena), sampling, numerical

analysis (Monte Carlo methods, e.g.), etc.

• Early on, people used physical methods (currently still in use in lotteries), and

thought about building hardware to generate “random” results. No good

large-scale solution, though, and besides it seemed useful to be able to

repeat a calculation.

• Hence need for “random number generator” (RNG) — way to generate

“random” sequences of elements from a given set (e.g., integers or doubles).

Tricky topic. Many early researchers got it wrong. Many application writers



CSCI 3366 October 4, 2006

Slide 7

aren’t interested in details.

Slide 8

Desirable Properties of RNG — “Randomness”

• Obviously a key goal, if tricky to define. A thought-experiment definition:

Suppose we’re generating integers in the range from 1 through d, and we let

an observer examine as much of the sequence as desired, and ask for a

guess for any other element in the sequence. If the probability of the guess

being right is more than 1/d, the sequence isn’t random.

• Also want uniformity — for each element, equal probability of getting any of

the possible values.

• For some applications, also need to consider “uniformity in higher

dimensions”: Consider treating sequence as sequence of points in 2D, 3D,

etc., space. Are the points spread out evenly?



CSCI 3366 October 4, 2006

Slide 9

Minute Essay

• What kind of experiments might be useful in figuring out whether a random

sequence is “good” for the Monte Carlo pi problem?


