
CSCI 3366 October 11, 2006

Slide 1

Administrivia

• Homework 2 on Web.

• Notes from last time updated with a few more Linux tips. With regard to

getting output, notice that you could also just have your program write (some

of its) output directly to a file or files.

Slide 2

Recap — Algorithm Structure Patterns

• If decomposition/analysis reveals organization in terms of tasks — Task

Parallelism (probably most common strategy) or Divide and Conquer.

• If decomposition/analysis reveals organization in terms of data — Geometric

Decomposition (second most common strategy) or Recursive Data.

• If organization is in terms of flow of data — (Pipeline and Event-Based

Coordination).

• Last time we talked briefly about Task Parallelism and Geometric

Decomposition. Other four this time.



CSCI 3366 October 11, 2006

Slide 3

Divide and Conquer

• Problem statement:

Suppose the problem is formulated using the sequential divide and conquer

strategy. How can the potential concurrency be exploited?

• Key idea in solution — create new task(s) every time we split (sub)problem,

recombine when we merge.

• Examples include mergesort and some non-naive algorithms for N -body

problem.

• Straightforward if you already have a sequential divide-and-conquer solution,

but scalability is somewhat limited.

Slide 4

Recursive Data

• Problem statement:

Suppose the problem involves an operation on a recursive data structure

(such as a list, tree, or graph) that appears to require sequential processing.

How can operations on these data structures be performed in parallel?

• Key idea in solution — “out of the box” thinking to expose concurrency.

• Probably least-used structure currently (because it doesn’t map well to

current architectures); included for completeness and because examples are

interesting — e.g. “roots in forest” example.



CSCI 3366 October 11, 2006

Slide 5

Pipeline

• Problem statement:

Suppose that the overall computation involves performing a calculation on

many sets of data, where the calculation can be viewed in terms of data

flowing through a sequence of stages. How can the potential concurrency be

exploited?

• Key idea in solution — set up “assembly line” (pipeline).

• Canonical example is signal/image processing application, where you have a

sequence of incoming images and want to apply same sequence of

transformations to each one.

Slide 6

Event-Based Coordination

• Problem statement:

Suppose the application can be decomposed into groups of

semi-independent tasks interacting in an irregular fashion. The interaction is

determined by the flow of data between them which implies ordering

constraints between the tasks. How can these tasks and their interaction be

implemented so they can execute concurrently?

• Key idea in solution — structure computation in terms of semi-independent

entities, interacting via “events”.

• Canonical example is discrete event simulation — simulating many

semi-independent entities that interact in irregular/unpredictable ways.



CSCI 3366 October 11, 2006

Slide 7

Minute Essay

• How scalable are Pipeline and Event-Based Coordination? if not very, how

could you fix that?

Slide 8

Minute Essay Answer

• Neither pattern is very scalable, since they’re based on a task decomposition

that has one task per pipeline stage or one task per entity. Sometimes

additional concurrency can be exposed by further decomposing these stages

or entities.


