CSCI 3366 October 11, 2006

Administrivia

e Homework 2 on Web.

e Notes from last time updated with a few more Linux tips. With regard to
getting output, notice that you could also just have your program write (some

of its) output directly to a file or files.

Slide 1

Recap — Algorithm Structure Patterns

e |f decomposition/analysis reveals organization in terms of tasks — Task
Parallelism (probably most common strategy) or Divide and Conquer.

e |f decomposition/analysis reveals organization in terms of data — Geometric
Decomposition (second most common strategy) or Recursive Data.

Slide 2 e [f organization is in terms of flow of data — (Pipeline and Event-Based

Coordination).

e |ast time we talked briefly about Task Parallelism and Geometric

Decomposition. Other four this time.




CSCI 3366 October 11, 2006

Divide and Conquer

o Problem statement:

Suppose the problem is formulated using the sequential divide and conquer

strategy. How can the potential concurrency be exploited?

e Key idea in solution — create new task(s) every time we split (sub)problem,

Slide 3 recombine when we merge.

e Examples include mergesort and some non-naive algorithms for /V-body

problem.

e Straightforward if you already have a sequential divide-and-conquer solution,

but scalability is somewhat limited.

Recursive Data

e Problem statement:
Suppose the problem involves an operation on a recursive data structure
(such as a list, tree, or graph) that appears to require sequential processing.
How can operations on these data structures be performed in parallel?

Slide 4 e Key idea in solution — “out of the box” thinking to expose concurrency.

e Probably least-used structure currently (because it doesn’t map well to
current architectures); included for completeness and because examples are

interesting — e.g. “roots in forest” example.




CSCI 3366 October 11, 2006

Pipeline

e Problem statement:
Suppose that the overall computation involves performing a calculation on
many sets of data, where the calculation can be viewed in terms of data
flowing through a sequence of stages. How can the potential concurrency be

exploited?
slide 5 P

e Key idea in solution — set up “assembly line” (pipeline).

e Canonical example is signal/image processing application, where you have a
sequence of incoming images and want to apply same sequence of
transformations to each one.

Event-Based Coordination

e Problem statement:

Suppose the application can be decomposed into groups of
semi-independent tasks interacting in an irregular fashion. The interaction is
determined by the flow of data between them which implies ordering

Slide 6 constraints between the tasks. How can these tasks and their interaction be

implemented so they can execute concurrently?

e Key idea in solution — structure computation in terms of semi-independent

entities, interacting via “events”.

e Canonical example is discrete event simulation — simulating many

semi-independent entities that interact in irregular/unpredictable ways.




CSCI 3366 October 11, 2006

e How scalable are Pipeline and Event-Based Coordination? if not very, how

could you fix that?

Slide 7
e Neither pattern is very scalable, since they're based on a task decomposition
that has one task per pipeline stage or one task per entity. Sometimes
additional concurrency can be exposed by further decomposing these stages
or entities.
Slide 8




