
CSCI 3366 October 18, 2006

Slide 1

Administrivia

• Reminder: Homework 2 due today. Remember to turn in both revised code

and graphs/plots.

Slide 2

Supporting Structures Program Structure patterns —
Recap

• Basic ways parallel programs can be structured:

– SPMD (Single Program, Multiple Data) — “like an MPI program” (but could

use same strategy in OpenMP, e.g.).

– Loop Parallelism — “like an OpenMP program”.

– Master/Worker — as the name suggests. Look briefly at MPI example.

– Fork/Join — if you need to be able to create / wait for UEs in any arbitrary

way.

• How to choose one? usually based on combination of programming

environment (MPI, OpenMP, etc.) and overall strategy (Algorithm Structure

pattern).



CSCI 3366 October 18, 2006

Slide 3

Supporting Structures Data Structure Patterns

• Probably not a complete list, but some examples of frequently-used ways of

sharing data:

– Shared Data (generic advice for dealing with data dependencies).

– Shared Queue (what the name suggests — mostly included as example of

applying Shared Data).

– Distributed Array (what the name suggests).

• Programming environment / library may provide support (e.g., Java has library

class(es) for shared queues).

Slide 4

Shared Queue

• Many applications — especially ones using a master/worker approach —

need a shared queue. Programming environment might provide one, or might

not. Nice example of dealing with a shared data structure anyway.

• Java code in figures 5.37 (p. 185) through 5.40 (p. 189) presents a

step-by-step approach to developing implementation.



CSCI 3366 October 18, 2006

Slide 5

Shared Queue, Continued

• Simplest approach to managing a shared data structure where concurrent

modifications might cause trouble — one-at-a-time execution. Shown in

figures 5.37 (nonblocking) and 5.38 (block-on-empty). Only tricky bits are use

of dummy first node and details of take. Reasons to become clearer later.

Usually a good idea to try simplest approach first, and only try more complex

ones if better performance is needed. (“Premature optimization is the root of

all evil.” Attributed to D. E. Knuth; may actually be C. A. R. Hoare.)

• Here, next thing to try is concurrent calls to put and take. Not too hard for

nonblocking queue — figure 5.39. Tougher for block-on-empty queue —

figure 5.40. In both cases, must be very careful.

• If still too slow, or a bottleneck for large numbers of UE, explore distributed

queue.

Slide 6

Minute Essay

• What did you find most difficult about Homework 2? most interesting?


