
CSCI 3366 October 27, 2006

Slide 1

Administrivia

• Homework 3 on Web. Due next Friday.

• (Review minute essay from last time.)

Slide 2

Supporting Structures — Recap

• Program structuring patterns — we’ve talked about these. How to decide?

Tables in section 5.3 should be helpful.

• Data structure patterns — Distributed Array is widely useful. Shared Queue

less so since many programming environments will provide something.

Shared Data is good general advice.



CSCI 3366 October 27, 2006

Slide 3

Molecular Dynamics Example — Recap

• Previously discussed the problem (what we’re computing and how) and

sketched out how to decompose/analyze it.

• Also decided on overall algorithm structure of Task Parallelism. Pseudocode

in next slide, again.

Slide 4

Pseudocode for Non-Bonded Force Computation

function non_bonded_forces (N, Atoms, neighbors, Forces)

Int const N // number of atoms

Array of Real :: atoms (3,N) //3D coordinates

Array of Real :: forces (3,N) //force in each dimension

Array of List :: neighbors(N) //atoms in cutoff volume

Real :: forceX, forceY, forceZ

loop [i] over atoms

loop [j] over neighbors(i)

forceX = non_bond_force(atoms(1,i), atoms(1,j))

forceY = non_bond_force(atoms(2,i), atoms(2,j))

forceZ = non_bond_force(atoms(3,i), atoms(3,j))

force(1,i) += forceX; force(1,j) -= forceX;

force(2,i) += forceY; force(2,j) -= forceY;

force(3,i) += forceZ; force(3,j) -= forceZ;

end loop [j]

end loop [i]

end function non_bonded_forces



CSCI 3366 October 27, 2006

Slide 5

Molecular Dynamics and Task Parallelism

• How to define tasks so we get “enough but not too many”?

One task per atom pair is too many; one task per atom is probably right.

• How to manage data dependencies (if any)?

Dependency involving forces array — potentially any UE can write to any

element, if we exploit symmetry resulting from Newton’s third law. But

computation is accumulation/reduction, so just give each UE a local copy and

combine all copies at end.

• How to assign tasks to UEs? statically (at compile time) or dynamically (at

runtime)?

Work per task can vary, since how many atoms are “close” varies. Decide at

next level.

Slide 6

Design of Program for Molecular Dynamics

• Finally, we turn the design into code, probably using patterns from Supporting

Structures design space, and possibly some information/understanding from

Implementation Mechanisms.

• Based on previous design steps, consider Loop Parallelism and/or SPMD.

Decide based mostly on target platform.



CSCI 3366 October 27, 2006

Slide 7

Molecular Dynamics and SPMD — Key Design
Decisions

• Only parallelize computation of non-bonded forces, since that’s most of the

computational load.

• Keep a copy of the full force and coordinate arrays on each node.

• Have each UE redundantly update positions and velocities for the atoms (i.e.,

assume it’s cheaper to redundantly compute these terms than to do them in

parallel and communicate the results).

• Have each UE compute its contributions to the force array and then combine

(or reduce) the UEs’ contributions into a single global force array copied onto

each UE.

Slide 8

Molecular Dynamics and SPMD — Code

• Slightly more detailed sequential pseudocode in figure 5.7 (p. 134).

• MPI main pseudocode in figure 5.8 (p. 135). Compare to figure 5.7.

• Pseudocode for computation of non-bonded forces in figure 5.9 (p. 136).

Compare to sequential pseudocode in figure 4.4 (p. 72).

• Pseudocode for computation of neighbor list in figure 5.10 (p. 137). Notice

that we exploit the symmetry resulting from Newton’s third law.

• A remaining decision — how to distribute atoms among UEs. Cyclic

distribution is easy and will probably work okay. If not, could do something

more complex — define “owner-computes filter” — boolean function of ID and

loop iteration.

• Notice that we could do this in OpenMP too.



CSCI 3366 October 27, 2006

Slide 9

Molecular Dynamics and Loop Parallelism — Key
Design Decisions

• Parallelize computationally intensive loop only (the one for non-bonded

forces).

• Figure out what to do about shared variables:

– Make temporary variables used inside loop private.

– Make forces array a reduction variable.

• Decide how to map iterations onto UEs. Dynamic schedule works well if

available (as it is in OpenMP).

• OpenMP-based pseudocode as shown in figure 5.25 (p. 161) and following

pragma omp directives). Compare to pseudocode in figure 4.4 (p. 72).

Slide 10

A Little About Homework 3

• (See homework writeup on Web for details.)



CSCI 3366 October 27, 2006

Slide 11

Minute Essay

• Which of the Algorithm Structure patterns we talked about seems like a good

fit for the “game of life” program as described? (Choices include Task

Parallelism (like the numerical integration example), Divide and Conquer,

Geometric Decomposition (like the heat equation), Recursive Data, Pipeline,

and Event-Based Coordination.)

• What other pattern(s) we’ve talked about recently seem like they might be

useful?

Slide 12

Minute Essay Answer

• Geometric Decomposition seems like a good fit.

• Distributed Array should also be useful, for the distributed-memory version

anyway.


