
CSCI 3366 November 29, 2006

Slide 1

Administrivia

• A note for those who weren’t here the Wednesday before the holiday: Skim

the “Twelve ways to fool the masses” paper linked from the “Useful links”

page: tongue-in-cheek, but some useful ideas.

Slide 2

A Little About Multithreaded Programming with POSIX
Threads

• POSIX threads (“pthreads”): widely-available set of functions for

multithreaded programming, callable from C/C++.

• Same ideas as multithreaded programming with OpenMP and Java, but not

as nicely packaged (my opinion). Might be more widely available than

OpenMP compilers, though.



CSCI 3366 November 29, 2006

Slide 3

POSIX Threads — UE Management

• Create a new thread with pthread create(), specifying function to

execute and a single argument. (Yes, this is restrictive — but the single

argument could point to a complicated data structure.)

• Thread continues until function terminates. Best to end with call to

pthread exit().

Slide 4

POSIX Threads — Synchronization

• pthread join() waits until another thread finishes — similar to join

in Java’s Thread class.

• Various synchronization mechanisms:

– Mutexes (locks): pthread mutex init(),

pthread mutex destroy(), pthread mutex lock(),

pthread mutex unlock().

– Condition variables: pthread cond init(),

pthread cond destroy(), pthread cond wait(),

pthread cond signal().

– Semaphores: sem init(), sem destroy(), sem wait(),

sem post().



CSCI 3366 November 29, 2006

Slide 5

POSIX Threads — Communication

• As with other multithreaded programming environments we’ve looked at,

conceptually all threads share access to a single memory space.

• In terms of scoping, though, each thread has access to:

– Any global variables (shared with other threads).

– Its single argument (potentially shared with other threads).

– Any local variables (not shared with other threads — since every call to

function creates a new copy).

Slide 6

POSIX Threads — Simple Examples

• “Hello world” example.

• “Hello world” example with delay (to illustrate synchronization).

• Numerical integration example.



CSCI 3366 November 29, 2006

Slide 7

Minute Essay

• If you wanted to provide a parallel programming environment on a new

architecture or operating system, which do you think would be easier to port,

a POSIX threads library or an OpenMP compiler?

Slide 8

Minute Essay Answer

• Probably the POSIX threads library — less code overall, and for both of them

you’d have to figure out basic stuff such as thread creation and

synchronization.


