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Administrivia

• A note for those who weren’t here the Wednesday before the holiday: Skim

the “Twelve ways to fool the masses” paper linked from the “Useful links”

page: tongue-in-cheek, but some useful ideas.
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A Little About Multithreaded Programming with POSIX
Threads

• POSIX threads (“pthreads”): widely-available set of functions for

multithreaded programming, callable from C/C++.

• Same ideas as multithreaded programming with OpenMP and Java, but not

as nicely packaged (my opinion). Might be more widely available than

OpenMP compilers, though.
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POSIX Threads — UE Management

• Create a new thread with pthread create(), specifying function to

execute and a single argument. (Yes, this is restrictive — but the single

argument could point to a complicated data structure.)

• Thread continues until function terminates. Best to end with call to

pthread exit().
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POSIX Threads — Synchronization

• pthread join() waits until another thread finishes — similar to join

in Java’s Thread class.

• Various synchronization mechanisms:

– Mutexes (locks): pthread mutex init(),

pthread mutex destroy(), pthread mutex lock(),

pthread mutex unlock().

– Condition variables: pthread cond init(),

pthread cond destroy(), pthread cond wait(),

pthread cond signal().

– Semaphores: sem init(), sem destroy(), sem wait(),

sem post().
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POSIX Threads — Communication

• As with other multithreaded programming environments we’ve looked at,

conceptually all threads share access to a single memory space.

• In terms of scoping, though, each thread has access to:

– Any global variables (shared with other threads).

– Its single argument (potentially shared with other threads).

– Any local variables (not shared with other threads — since every call to

function creates a new copy).
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POSIX Threads — Simple Examples

• “Hello world” example.

• “Hello world” example with delay (to illustrate synchronization).

• Numerical integration example.
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Minute Essay

• If you wanted to provide a parallel programming environment on a new

architecture or operating system, which do you think would be easier to port,

a POSIX threads library or an OpenMP compiler?
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Minute Essay Answer

• Probably the POSIX threads library — less code overall, and for both of them

you’d have to figure out basic stuff such as thread creation and

synchronization.


