
CSCI 3366 December 4, 2006

Slide 1

Administrivia

• Sample programs page updated to include all code shown in class (except

today’s example, coming soon).

• Reminder: Homeworks not accepted past Wednesday at 5pm.

Grades/comments coming soon by e-mail.

• Projects due at scheduled final time (Tuesday 12/12 8:30am). We need a bit

more than an hour for project presentations. Start at 10am?

• Office hours this week to be announced by e-mail.

• Questions about grading?

Slide 2

Distributed-Memory Programming in Java — Review

• Most common situation is probably client/server. Two basic approaches:

– Regular network communication using sockets.

– RMI (Remote Method Invocation).

• First a quick review of basic ideas, then review/finish example from last time.



CSCI 3366 December 4, 2006

Slide 3

Client/Server in Java — Sockets

• Server sets up “server socket” specifying port number, then waits to accept

connections. Connection generates socket. Often start a new thread to

communicate with client.

• Client connects to server by giving name/IPA and port number — generates a

socket.

• On each side, get input/output streams for socket. Must define some

“protocol” for two sides to communicate (basically, details of what each side

will send and receive, in what order).

Slide 4

Client/Server in Java — RMI

• Motivation — for client/server applications, can be annoying to have to design

your own protocol.

• Instead, idea is to define “remote objects” that can be treated (at program

level) like any other objects — invoke methods.

• Typical use in client/server program:

– Server creates some remote objects and “registers” them.

– Clients look up server’s remote objects and invoke their methods.

– Both sides can pass around references to other remote objects.

• Dynamic code loading possible too.



CSCI 3366 December 4, 2006

Slide 5

RMI, Quick How-To

• Define a class for remote objects:

– Define interface that extends Remote

– Define class that implements that interface, extends a Java remote object

class. Can also include other methods, only available locally.

– Write code using classes — if using as remote object, reference interface;

otherwise can reference class.

• Compile and execute:

– Compile as usual, plus run rmic to generate “stubs” to be used in

communicating with remote objects as remote objects.

– Make classes network-accessible.

– Start rmiregistry.

– Run server and clients as usual.

Slide 6

Review of Course

• “PAD I for parallel programming”? We covered:

– Three languages/libraries — OpenMP, MPI, Java.

– How to find and exploit concurrency in programs.

• We also did several running examples and some homeworks . . .



CSCI 3366 December 4, 2006

Slide 7

Review of Homeworks

• Homeworks 1 and 2 — estimating π with Monte Carlo methods. Basic

structure is Task Parallelism. Complication is that you need a thread-safe

RNG.

• Homework 3 — Conway’s game of life. Basic structure is Geometric

Decomposition. Basic idea easy, details a bit messy (especially in C).

• Homework 4 — quicksort. Basic structure is Divide and Conquer.

• For all programs, probably need large problem sizes to get any benefit from

multiple UEs.

Slide 8

Minute Essay

• How did the course compare with your expectations/goals? Did you learn

what you hoped to learn?


