
CSCI 3366 January 31, 2008

Slide 1

Administrivia

• Homework 1 on Web; first part due next Thursday.

• A request: You will turn in most if not all work for this course by e-mail. Please
do include the name or number of the course in the subject line of your
message, plus something about which assignment it is, to help me get it into
the correct folder for grading.

Slide 2

Minute Essay From Last Lecture

• What progress has been made on parallelizing compilers?

Some, but they’re not the holy grail that was hoped for. More later, if time
permits. Compiler for OpenMP extensions can be thought of one that
parallelizes with some human assistance. How does it do that — still
nontrivial, can be interesting to look at assembly-language code generated by
compiler!

• How do you resolve bottleneck issues in shared-memory MIMD?

Hardware or software? both could be bottlenecks, and we’ll talk some about
the latter, not so much about the former. (NUMA helps with one hardware
bottleneck.)

• More about math, like Amdahl’s law?

Good question! perhaps start by looking at (somewhat old?) literature on
“Parallel Random Access Machine (PRAM)”.



CSCI 3366 January 31, 2008

Slide 3

OpenMP

• Early work on message-passing programming resulted in many competing
programming environments — but eventually, MPI emerged as a standard.

• Similarly, many different programming environments for shared-memory
programming, but OpenMP may be emerging as a standard.

• In both cases, idea was to come up with a single standard, then allow many
implementations. For MPI, standard defines concepts and library. For
OpenMP, standard defines concepts, library, and compiler directives.

• First release 1997 (for Fortran, followed in 1998 by version for C/C++).

• Several production-quality commercial compilers available. Up until very
recently, free compilers were, um, “research software” or in work. Latest
versions of GNU compilers, though, offer support. !!

Slide 4

What’s an OpenMP Program Like?

• Fork/join model — “master thread” spawns a “team of threads”, which execute
in parallel until done, then rejoin main thread. Can do this once in program, or
multiple times.

• Source code in C/C++/Fortran, with OpenMP compiler directives (#pragma
— ignored if compiling with a compiler that doesn’t support OpenMP) and
(possibly) calls to OpenMP functions.

Compiler must translate compiler directives into calls to appropriate functions
(to start threads, wait for them to finish, etc.)

• A plus — can start with sequential program, add parallelism incrementally —
usually by finding most time-consuming loops and splitting them among
threads.

• Number of threads controlled by environment variable or from within program.



CSCI 3366 January 31, 2008

Slide 5

Simple Example / Compiling and Executing

• Look at simple program — hello.c on sample programs page.

• Compile with compiler supporting OpenMP.

• Execute like regular program. Can set environment variable
OMP NUM THREADS to specify number of threads. Default value seems to
be one thread per processor.

Slide 6

Sidebar — Environment Variables (in bash)

• To set environment variable FOO for the rest of the session:

export FOO=fooval

(To set every time you log in, put in .bash profile.)

• To run bar with a value for FOO:

FOO=fooval bar



CSCI 3366 January 31, 2008

Slide 7

How Do Threads Interact?

• With OpenMP, threads share an address space, so they communicate by
sharing variables. (Contrast with MPI, to be discussed next, in which
processes don’t share an address space, so to communicate they must use
messages.)

• Sharing variables is more convenient, may seem more natural.

• However, “race conditions” are possible — program’s outcome depends on
scheduling of threads, often giving wrong results.

What to do? use synchronization to control access to shared variables.
Works, but takes (execution) time, so good performance depends on using it
wisely.

Slide 8

OpenMP Constructs — Basic Categories

• Parallel regions (“replicate the following in all threads”).

• Worksharing (“divide the following among threads”).

• Data environment (shared variables versus per-thread variables).

• Synchronization.

• Runtime functions / environment variables.



CSCI 3366 January 31, 2008

Slide 9

Parallel Regions in OpenMP

• #pragma omp parallel tells compiler to do following block in all
threads (starting team of threads if necessary). Execution doesn’t proceed in
main thread until all are done. Example — “hello world” shown earlier.

• Block must be a “structured block” — block with one point of entry (at top) and
one point of exit (at bottom). In C/C++, this is a statement or statements
enclosed in brackets (with no gotos into / out of block).

Slide 10

Worksharing Constructs in OpenMP

• #pragma omp parallel for tells compiler to split iterations of
following for loop among threads. By default, main thread doesn’t continue
until all are done, but can override that (might be useful if you have two
consecutive such loops).

• How loop iterations are mapped onto threads — controlled by schedule
clause. More about this later.

• To make different threads do different things — #pragma parallel
sections, etc. (More in standard.)



CSCI 3366 January 31, 2008

Slide 11

A Little About Variables in OpenMP

• Most variables are shared by default, including any global variables.

• Some things, though, aren’t — variables within a statement block, stack
(local) variables in subprograms called from parallel region.

• Can specify that each thread gets its own copy with private clause.
firstprivate and lastprivate can be used to start/end with
shared value.

• Can specify that each thread gets its own copy, and copies are combined at
the end, with reduction clause. Operations include sum, product, and/or.
No max or min in C/C++.

Slide 12

Example — Numerical Integration

• Compute π by integrating
∫ 1

0
4

1+x2 dx.

• Do this numerically by approximating area under curve by many small
rectangles, computing their area, adding results.

• Sequential program fairly straightforward. (num-int-seq.c on “sample
programs” page).

• “Parallelize” how? (num-int-par.c on “sample programs” page).



CSCI 3366 January 31, 2008

Slide 13

Assigning Work to Threads — schedule clause

• static (with optional chunk size) — divide iterations into fixed-size blocks,
distribute evenly among threads.

• dynamic (with optional chunk size) — queue of iterations, threads grab
blocks of iterations until all done.

• guided (with optional chunk size) — like dynamic, but with decreasing
blocks of iterations.

• runtime — get from OMP SCHEDULE environment variable.

Slide 14

Homework 1 Background

• In Homework 1, you will make a first pass at writing a set of programs (one
using OpenMP, one using MPI, and one using Java) to solve the following
problem. (We’ll talk more about it in class after you’ve tried it.)

• We talked about computing π using numerical integration. Another interesting
(surprising?) approach uses a “Monte Carlo” method:

Consider a square with sides of length 2 (any unit you like), enclosing a circle
of radius 1.

Approximate the area of the circle by “throwing darts” at the square, counting
how many fall within the circle, and calculating the ratio of those within the
circle to the total number.

Model “throwing darts” by using pseudorandom number generator to
generate coordinates of a point.



CSCI 3366 January 31, 2008

Slide 15

Minute Essay

• Running the numerical integration example with different numbers of threads
gives different results. Why do you think that happens?

Slide 16

Minute Essay Answer

• The order in which the partial results (produced by the iterations of the loop to
compute areas of rectangles) are added together depends on the number of
threads and the scheduling — and floating-point arithmetic is not
associative (!).


