
CSCI 3366 February 5, 2008

Slide 1

Administrivia

• Reminder: Homework 1 (first part) due Thursday. (How are people doing?)

Slide 2

OpenMP — Overview (Review)

• Parallel programming environment for shared-memory programming, possibly
emerging as de facto standard.

• Set of extensions to selected sequential programming languages — compiler
directives, library functions.



CSCI 3366 February 5, 2008

Slide 3

OpenMP Constructs — Basic Categories

• Parallel regions (“replicate the following in all threads”).

• Worksharing (“divide the following among threads”).

• Data environment (shared variables versus per-thread variables).

• Synchronization.

• Runtime functions / environment variables.

Slide 4

Library Functions

• omp get num threads, omp set num threads,
omp get thread num — as in examples and appendix.

• omp get wtime — as in examples and appendix.

• Functions to do locking — more about them shortly.

• Functions to do other things — in specification.



CSCI 3366 February 5, 2008

Slide 5

Synchronization Constructs

• critical — only one thread at a time executes this block of code.
(Example — synch-2.c on sample programs page.)

• barrier — threads wait here until all have arrived. Implicit barrier at end of
parallel region.

• single — only one thread executes this block.

• Several others — atomic, flush, ordered, master. More about
them in the specification.

Slide 6

Locks

• omp lock t — declares a lock variable.

• omp init lock, omp destroy lock — create and destroy.

• omp set lock — acquire lock (wait if necessary).

• omp unset lock — release lock.

• Other functions described in specification.

• Example — synch-3.c on sample programs page.



CSCI 3366 February 5, 2008

Slide 7

MPI — the Message Passing Interface

• Idea was to come up with a single standard (concepts and library) for
message-passing programs, then allow many implementations. Similar to
language standards (C, C++, etc.). Good for portability.

• MPI Forum — international consortium — began work in 1992. MPI 1.1 and
MPI 2.0 standards defined. Huge! 1.1 specification is 500+ pages.

• Original reference implementation — MPICH (Argonne National Lab).
LAM/MPI (Local Area Multicomputer) is another free implementation. Latest /
most popular may be OpenMPI (installed here).

Slide 8

What’s an MPI Program Like?

• “SPMD” (Single Program, Multiple Data) model — many processes, all
running the same source code, but each with its own memory space and
each with a different ID. Could take different paths through the code
depending on ID.

• Source code in C/C++/Fortran, with calls to MPI library functions.

• How programs get started isn’t specified by the standard! (for
historical/political reasons — some early target platforms were very
restrictive, would not have supported what academic-CS types wanted).

• (Compare and contrast all of the above with OpenMP.)



CSCI 3366 February 5, 2008

Slide 9

What’s in the MPI Library?

• Setup and bookkeeping — initialization, cleanup, environment query, etc.

• Data management — pack/unpack, derived data types.

• Point-to-point communication — several varieties, differing mostly in how
much synchronization.

• Collective operations — e.g., broadcast.

Slide 10

MPI “Communicators”

• (One more thing to define before we can write simple code.)

• MPI allows grouping processes; group plus associated context called a
“communicator”. Makes it easier to write “safe” parallel libraries.

• Predefined communicator MPI COMM WORLD includes all processes.
Programmers can create additional ones.



CSCI 3366 February 5, 2008

Slide 11

Simple Examples / Compiling and Executing

• Look at sample program hello.c. (All sample programs from class should
be on the Web, linked from course “sample programs” page, with short
instructions on how to use MPI.)

• We’ll use OpenMPI as installed on the F7 lab machines. There should be
man pages for all commands and functions.

• Compile with mpicc.

• Execute with mpirun.

Slide 12

Simple (Blocking) Point-to-Point Communication in MPI

• Send with MPI Send — returns as soon as data has been copied to system
buffer, buffer in program can be reused.

• Receive with MPI Recv — waits until message has been received.

• Can use “tags” to distinguish between kinds of messages. Can receive
selectively or not (MPI ANY TAG). Received tag is in returned
MPI Status variable (e.g., status.MPI TAG).

• Can receive from specific sender or from any sender. (MPI ANY SOURCE).
Sender is in returned MPI Status variable (e.g.,
status.MPI SOURCE).

• For MPI Recv, “length” parameter specifies buffer length. Use
MPI Get count to get actual count.

• Look at sample program send-recv.c.



CSCI 3366 February 5, 2008

Slide 13

Not-So-Simple Point-to-Point Communication in MPI

• For not-too-long messages and when readability is more important than
performance, MPI Send and MPI Recv are probably fine.

• If messages are long, however, buffering can be a problem, and can even
lead to deadlock. Also, sometimes it’s nice to be able to overlap computation
and communication.

• Therefore, MPI offers several other kinds of send/receive functions —
“synchronous” (blocks both sender and receiver until communication can take
place), “non-blocking” (doesn’t block at all, program must later test/wait for
communication to take place).

(More about these later.)

Slide 14

Collective Communication in MPI

• “Collective communication” operation — one that involves many processes
(typically all, or all in MPI “communicator”).

• Could implement using point-to-point message passing, but some operations
are common enough to be library functions — broadcast (MPI Bcast),
“reduction” (MPI Reduce), etc.



CSCI 3366 February 5, 2008

Slide 15

Minute Essay

• If you add the following lines to sample program send-recv.c, right after
the call to printf() for process 0

buff[0] = 30;
buff[1] = 40;

what does process 1 print?

Slide 16

Minute Essay Answer

• The same thing as before — the old data has already been sent to process 1
(or at least copied to a system buffer somewhere), so the change doesn’t
affect what happens in process 1.


