
CSCI 3366 February 12, 2008

Slide 1

Administrivia

• Reminder: MPI program for Homework 1 due today. Java program due
Thursday.

Slide 2

Multithreaded Programming in Java — Recap

• Multithreaded programing in Java is based on the shared-memory model,
similar to OpenMP. Support provided by a few keywords (e.g.,
synchronized) and several library classes and methods.

• Create threads like other objects, either by subclassing Thread or with a
Runnable object. (Second method usually preferred as being better
object-oriented design.) Also some useful classes in
java.util.concurrency — see Hello3.java,
Hello4.java, Hello5.java on sample programs page.



CSCI 3366 February 12, 2008

Slide 3

Shared Variables in Java

• Code executed by a thread is some object’s run method. Access to
variables is consistent with usual Java scoping — class/instance variables,
parameters, etc.

• As we noted before, though, simultaneous access to shared variables can be
risky, however. So . . .

Slide 4

Synchronization in Java

• Interaction among threads in Java based on “monitor” idea (Hoare (1975) and
Brinch Hansen (1975)).

• Every object has implicit lock; synchronized keyword means “only run
this when you have the relevant lock” — if another thread has the lock, wait.
Can be used to ensure one-at-a-time access to critical variables.

“Relevant lock”? For synchronized methods, lock for object (instance
methods) or class (static methods). For synchronized blocks, you specify the
object.

Example — HelloSynch*.java on sample programs page.

• wait and notify methods allow more interesting kinds of coordination.
But first . . .



CSCI 3366 February 12, 2008

Slide 5

Numerical Integration Example, Revisited

• How to parallelize using Java? well, first must rewrite in Java
(NumIntSeq.java on sample programs page).

• Now rewrite to use multiple threads, based on same strategy we used for
OpenMP — split loop iterations among threads, give each its own copy of
work variables, compute sum based on “reduction” idea. Some things must
be done more explicitly in Java. See NumIntPar.java on sample
programs page.

Slide 6

Synchronization in Java, Continued

• synchronized methods/blocks can be used to ensure that only one
thread at a time accesses some shared variable.

• For more complex synchronization problems, can use wait and notify
(or notifyAll):

wait suspends executing thread (adds to “wait set”).

notify wakes up one thread from the wait set. notifyAll wakes up all
threads. Waked-up thread(s) then compete to reacquire lock and continue
execution.

Can only be done from within synchronized method/block.

Typical idiom — loop to check condition, wait.

• Example — bounded buffer class (BoundedBuffer.java,
TestBoundedBuffer.java on sample programs page).



CSCI 3366 February 12, 2008

Slide 7

Minute Essay

• synchronized has benefits — avoiding multiple threads changing a
shared variable at the same time. What risks/disadvantages can you imagine
that it might have?


