
CSCI 3366 March 4, 2008

Slide 1

Administrivia

• Reminder: Homework 2 due today.

Slide 2

Example Applications

• Before starting on Finding Concurrency patterns — two example applications

to be used as running examples.

• Last time we talked about a simplified molecular dynamics example. One

more . . .



CSCI 3366 March 4, 2008

Slide 3

Example — Heat Diffusion

• A simple example, representative of a big class of scientific-computing

applications — “heat distribution problem”.

• Goal is to simulate what happens when two ends of a pipe are put in contact

with things at different (constant) temperatures — pipe conducts heat, its

temperature changes over time, eventually converging on a smooth gradient.

• Can model mathematically how temperature in pipe changes over time using

partial differential equations.

• Can approximate solution by “discretizing” — spatially and with regard to time.

Slide 4

Heat Diffusion Code

double *uk = malloc(sizeof(double) * NX);

double *ukp1 = malloc(sizeof(double) * NX);

double *temp;

double dx = 1.0/NX; double dt = 0.5*dx*dx;

double maxdiff, diff;

initialize(uk, ukp1);

for (int k = 0; (k < NSTEPS) && (maxdiff >= threshold); ++k) {

/* compute new values */

for (int i = 1; i < NX-1; ++i) {

ukp1[i]=uk[i]+ (dt/(dx*dx))*(uk[i+1]-2*uk[i]+uk[i-1]);

}

/* check for convergence */

maxdiff = 0.0;

for (int i = 1; i < NX-1; ++i) {

diff = fabs(uk[i] - ukp1[i]);

if (diff > maxdiff) maxdiff = diff;

}

/* "copy" ukp1 to uk by swapping pointers */

temp = ukp1; ukp1 = uk; uk = temp;

printValues(uk, k);

}



CSCI 3366 March 4, 2008

Slide 5

Finding Concurrency Design Space

• Starting point in our grand strategy for developing parallel applications.

Overall idea — capture how experienced parallel programmers think about

initial design of parallel applications. Might not be necessary if clear match

between application and an Algorithm Structure pattern.

• Idea is to work through three groups of patterns in sequence (possibly with

backtracking):

– Decomposition patterns (Task Decomposition, Data Decomposition):

Break problem into tasks that maybe can execute concurrently.

– Dependency analysis patterns (Group Tasks, Order Tasks, Data Sharing):

Organize tasks into groups, analyze dependencies among them.

– Design Evaluation: Review what you have so far, possibly backtrack.

• Keep in mind — best to focus attention on computationally intensive parts of

problem.

Slide 6

Task-Based Versus Data-Based Decomposition

• Two basic approaches to decomposing a problem — task-based and

data-based. Usually one will seem more logical than the other, but may need

to think through both.

• Either way, you’ll look at both tasks and data; difference is in which you look at

first, and then the other follows.



CSCI 3366 March 4, 2008

Slide 7

Task Decomposition

• Goal here is to break up (some of) computation into “tasks” — logical

elements of overall computation that might be independent enough to do

concurrently.

• At this stage, try to stay abstract and portable; also try to identify lots of tasks

(can always recombine them later if too many), as independent of each other

as possible.

• Places to look for tasks include groups of function calls (e.g., in

divide-and-conquer strategy), loop iterations (e.g., many examples we’ve

discussed).

• Simple example — matrix multiplication.

• Once you have this, consider data related to each task (Data Decomposition).

Slide 8

Data Decomposition

• Goal here is to break up (some of) problem data into parts (“chunks”) that can

be operated on concurrently. Good choice if most computation consists of

updates to big data structure(s).

• Again, try to stay abstract and portable; also try to “parameterize”

decomposition so you can easily try various choices at runtime.

• Data structures to look at include arrays, recursive structures such as trees.

• Simple example — matrix multiplication.

• Once you have this, consider computation related to each chunk of data (Task

Decomposition).



CSCI 3366 March 4, 2008

Slide 9

Decomposition — Examples

• Next slides will show working through our two examples. For purposes of

illustration, we’ll do one starting with a Task Decomposition and inferring a

Data Decomposition, the other one the other way around.

Slide 10

Molecular Dynamics Example — Task Decomposition

• Tasks that find the vibrational forces on an atom.

• Tasks that find the rotational forces on an atom.

(Together, these are tasks to compute “bonded forces” — those due to

chemical bonds.)

• Tasks that find the non-bonded forces on an atom (the ones due to electrical

charges).

• Tasks that update the position and velocity of an atom.

• Tasks that update the neighbor list for an atom. (Or we could consider

updating all the neighbor lists as one task, as in the book, if we think it won’t

be done very often and therefore is not worthwhile to parallelize.)



CSCI 3366 March 4, 2008

Slide 11

Molecular Dynamics Example — Data Decomposition

• Key data structures:

– An array of atom coordinates, one element per atom.

– An array of atom velocities, one element per atom.

– An array of lists, one per atom, each defining the neighborhood of atoms

considered to be “close”.

– An array of forces on atoms, one element per atom.

• Decompose each of these to match task decomposition — into elements

corresponding to individual atoms.

Slide 12

Heat Diffusion Example — Data Decomposition

• Key data structures:

– Array for “old values” (time step k).

– Array for “new values” (time step k + 1).

• Most computation involves updating or otherwise operating on these two

arrays. Think of partitioning into “chunks”.



CSCI 3366 March 4, 2008

Slide 13

Heat Diffusion Example — Task Decomposition

• Tasks to compute new values from old values, one per chunk.

• Tasks to compute maximum difference between new and old values, one per

chunk.

• Task to swap pointers (to fake copying new values to old values).

Slide 14

Group Tasks

• Once you’ve broken down problem into tasks / data chunks, need to put it

back together as design for parallel algorithm.

• First step — look for “groups of tasks” — logically related, or interdependent,

or all with same constraints, etc. Often just one group.



CSCI 3366 March 4, 2008

Slide 15

Order Tasks

• Next step — identify constraints on groups of tasks. Possibilities:

– “First this, then that.”

– “All of these together.”

Slide 16

Molecular Dynamics Example — Group Tasks, Order
Groups

• Task groups based on list of a few slides back — each type of task (e.g.,

compute rotational forces) defines a task group.

• Ordering constraints, for each timestep:

– Task group to compute neighbor list must run before task group to

compute non-bonded forces.

– Task groups to compute bonded and non-bonded forces must run before

task group to update positions and velocities.

– Task group to update positions and velocities must run before next

timestep.

• (Also see Figure 3.4 in the book.)



CSCI 3366 March 4, 2008

Slide 17

Heat Diffusion Example — Group Tasks, Order Groups

• Task groups based on list of a few slides back — each type of task (e.g.,

compute new values from old values) defines a task group.

• Ordering constraints, for each timestep:

– Three tasks groups must run in sequence.

– All task groups must run before next timestep.

Slide 18

Data Sharing

• Sometimes tasks are totally independent, each executes on totally separate

data, etc. Usually not, though. Point here is to think through dependencies.

• Useful to think in terms of:

– “Task-local” data — variables used only/mainly by single task, particularly

the ones being updated. Example — chunks in heat diffusion problem.

– Globally shared data — variables not associated with any particular

task(s). Example — sum in numerical integration problem.

– Data shared among smaller groups of tasks. Example — “boundary”

points in heat diffusion problem.



CSCI 3366 March 4, 2008

Slide 19

Data Sharing, Continued

• Potential problems different in different environments; goal is to ensure

correctness without adding too much overhead:

– With shared memory, all UEs (can) have access to all data, but must use

synchronization to prevent “race conditions”.

– With distributed memory, each UE has its own data, so race conditions not

possible, but must use communication to (in effect) share data.

• Basic approach — first identify what data is shared, then figure out how it’s

used.

Slide 20

Data Sharing — Categories of Shared Data

• Read-only: Easiest case. If shared memory, don’t need to do anything. If

distributed memory, consider giving each process a copy. Examples include

global constants.

• Effectively-local (large data structure, but each element accessed by only one

UE): Also easy. If distributed memory, give each process “its” data.



CSCI 3366 March 4, 2008

Slide 21

Data Sharing — Categories of Shared Data, Continued

• Read-write (accessed by more than one task, at least one changing it): Can

be arbitrarily complicated, but some common cases aren’t too bad:

– “Accumulate” (variable(s) used to accumulate result — usually a

reduction). Example — sum in numerical integration problem. Give each

task (or each UE) a copy and combine at end.

– “Multiple-read/single-write” (multiple tasks need initial value, one task

computes new value). Example — points near boundaries of chunks in

heat diffusion problem. Create at least two copies, one for task that

computes new value, other(s) to hold initial value for other tasks.

Slide 22

Molecular Dynamics Example — Analyze Task/Data
Dependencies

• Arrays of atom positions, velocities:

– Read-only for most groups of tasks — but tasks may need access to many

elements, so for distributed memory might want to duplicate.

– Updated by one group of tasks, but each task updates its own element(s)

— “effectively local”.

• Array of forces:

– Read-only for group of tasks that update positions and velocities, and each

task needs access only to “local” data.

– Updated by several groups of tasks, but updates fit “accumulate data”

model.



CSCI 3366 March 4, 2008

Slide 23

Molecular Dynamics Example — Task/Data
Dependencies, Continued

• Array of neighbor lists:

– Read-only for group of tasks that compute “non-bonded” forces, and each

task needs access only to local data.

– Updated by one group of tasks, but each task updates its own element(s).

• (Also see Figure 3.5 in book.)

Slide 24

Heat Diffusion Example — Analyze Task/Data
Dependencies

• Arrays of old, new values:

– Old values read-only for all groups of tasks, and each task needs access

mostly to local data — plus “boundary values” for neighboring tasks.

– New values updated by one group of tasks, and each task computes

values only for “its” elements.

For distributed memory, could distribute among processes, with extra

variable(s) to hold copy of boundary values.

• Maximum difference between old, new values is “accumulate data” in one

group of tasks, read-only elsewhere.

• Pointers to old/new values — changed at end of time step by one task,

read-only elsewhere. Could duplicate for distributed memory.



CSCI 3366 March 4, 2008

Slide 25

Design Evaluation

• Idea of this pattern — questions to ask yourself about design/analysis before

going further, to reduce odds of costly mistakes.

• (To be continued.)

Slide 26

Minute Essay

• What do you think you learned from Homework 2 (specifically, did you figure

out anything that was baffling when you did Homework 1)?


