
CSCI 3366 March 25, 2008

Slide 1

Administrivia

• Homework 3 on Web. Due next Tuesday.

• What’s after that? Homework 4 (in two weeks), project. Information on Web.

Slide 2

Supporting Structures Program Structure patterns —
Recap

• Basic ways parallel programs can be structured:

– SPMD (Single Program, Multiple Data) — “like an MPI program” (but could
use same strategy in OpenMP, e.g.).

– Loop Parallelism — “like an OpenMP program”.

– Master/Worker — as the name suggests. Look briefly at MPI example.

– Fork/Join — if you need to be able to create / wait for UEs in any arbitrary
way.

• How to choose one? usually based on combination of programming
environment (MPI, OpenMP, etc.) and overall strategy (Algorithm Structure
pattern).



CSCI 3366 March 25, 2008

Slide 3

Supporting Structures Data Structure Patterns

• Probably not a complete list, but some examples of frequently-used ways of
sharing data:

– Shared Data (generic advice for dealing with data dependencies).

– Shared Queue (what the name suggests — mostly included as example of
applying Shared Data).

– Distributed Array (what the name suggests).

• Programming environment / library may provide support (e.g., Java has library
class(es) for shared queues).

Slide 4

Shared Queue

• Many applications — especially ones using a master/worker approach —
need a shared queue. Programming environment might provide one, or might
not. Nice example of dealing with a shared data structure anyway.

• Java code in figures 5.37 (p. 185) through 5.40 (p. 189) presents a
step-by-step approach to developing implementation.



CSCI 3366 March 25, 2008

Slide 5

Shared Queue, Continued

• Simplest approach to managing a shared data structure where concurrent
modifications might cause trouble — one-at-a-time execution. Shown in
figures 5.37 (nonblocking) and 5.38 (block-on-empty). Only tricky bits are use
of dummy first node and details of take. Reasons to become clearer later.

Usually a good idea to try simplest approach first, and only try more complex
ones if better performance is needed. (“Premature optimization is the root of
all evil.” Attributed to D. E. Knuth; may actually be C. A. R. Hoare.)

• Here, next thing to try is concurrent calls to put and take. Not too hard for
nonblocking queue — figure 5.39. Tougher for block-on-empty queue —
figure 5.40. In both cases, must be very careful.

• If still too slow, or a bottleneck for large numbers of UE, explore distributed
queue.

Slide 6

Distributed Array

• Key data structures for many scientific-computing applications are large
arrays, often 2D or 3D.

• If we have lots and lots of memory shared among UEs, and time to access an
element doesn’t depend on UE, all is well. Usually not the case. though —
obviously true for distributed-memory systems, somewhat true for NUMA
systems also.

• So — typical approach is to partition array into blocks and distribute them
among UEs. Idea is to do this to get:

– Good load balance.

– Minimum communication.

– “Clarity of abstraction”. Key idea — global indices versus local indices.

Pictures are easy to draw and understand; code can get messy.



CSCI 3366 March 25, 2008

Slide 7

Distributed Array, Continued

• Commonly used approaches (“distributions”):

– 1D block.

– 2D block.

– Block-cyclic.

• For some problems (such as heat distribution problem), makes sense to
extend each “local section” with “ghost boundary” containing values needed
for update.

• Look at some versions of code for the heat-distribution problem. (MPI code in
book as Figures 4.14 and 4.15 (pp. 90–91).)

Slide 8

Minute Essay

• The simple strategy for parallelizing the heat diffusion program with OpenMP
involves a lot of thread creation (twice per time step). Is there a way to do
better? (Does the strategy you’d use for MPI provide hints?)



CSCI 3366 March 25, 2008

Slide 9

Minute Essay Answer

• There’s certainly a way that might do better: You could essentially duplicate
the MPI strategy in OpenMP – make the whole program an OpenMP “parallel
section”, with each thread doing the time step loop, with barriers at the end of
each phase of the calculation. We did something like this with the numerical
integration example — “SPMD” versions in OpenMP.


