
CSCI 3366 March 27, 2008

Slide 1

Administrivia

• Homework 3 due next Thursday (deadline extended from Tuesday).

Slide 2

Supporting Structures — Recap

• Program structuring patterns — we’ve talked about these. How to decide?
Tables in section 5.3 should be helpful.

• Data structure patterns — Distributed Array is widely useful. Shared Queue
less so since many programming environments will provide something.
Shared Data is good general advice.



CSCI 3366 March 27, 2008

Slide 3

Molecular Dynamics Example — Recap

• Previously discussed the problem (what we’re computing and how) and
sketched out how to decompose/analyze it.

• Also decided on overall algorithm structure of Task Parallelism. Pseudocode
in next slide, again.

Slide 4

Pseudocode for Non-Bonded Force Computation

function non_bonded_forces (N, Atoms, neighbors, Forces)
Int const N // number of atoms
Array of Real :: atoms (3,N) //3D coordinates
Array of Real :: forces (3,N) //force in each dimension
Array of List :: neighbors(N) //atoms in cutoff volume
Real :: forceX, forceY, forceZ

loop [i] over atoms
loop [j] over neighbors(i)

forceX = non_bond_force(atoms(1,i), atoms(1,j))
forceY = non_bond_force(atoms(2,i), atoms(2,j))
forceZ = non_bond_force(atoms(3,i), atoms(3,j))
force(1,i) += forceX; force(1,j) -= forceX;
force(2,i) += forceY; force(2,j) -= forceY;
force(3,i) += forceZ; force(3,j) -= forceZ;

end loop [j]
end loop [i]

end function non_bonded_forces



CSCI 3366 March 27, 2008

Slide 5

Molecular Dynamics and Task Parallelism

• How to define tasks so we get “enough but not too many”?

One task per atom pair is too many; one task per atom is probably right.

• How to manage data dependencies (if any)?

Dependency involving forces array — potentially any UE can write to any
element, if we exploit symmetry resulting from Newton’s third law. But
computation is accumulation/reduction, so just give each UE a local copy and
combine all copies at end.

• How to assign tasks to UEs? statically (at compile time) or dynamically (at
runtime)?

Work per task can vary, since how many atoms are “close” varies. Decide at
next level.

Slide 6

Design of Program for Molecular Dynamics

• Finally, we turn the design into code, probably using patterns from Supporting
Structures design space, and possibly some information/understanding from
Implementation Mechanisms (to be discussed later).

• Based on previous design steps, consider Loop Parallelism and/or SPMD.
Decide based mostly on target platform.



CSCI 3366 March 27, 2008

Slide 7

Molecular Dynamics and Loop Parallelism — Key
Design Decisions

• Parallelize computationally intensive loop only (the one for non-bonded
forces).

• Figure out what to do about shared variables:

– Make temporary variables used inside loop private.

– Make forces array a reduction variable.

• Decide how to map iterations onto UEs. Dynamic schedule works well if
available (as it is in OpenMP).

• OpenMP-based pseudocode as shown in figure 5.25 (p. 161) and following
pragma omp directives). Compare to pseudocode in figure 4.4 (p. 72).

Slide 8

Molecular Dynamics and SPMD — Key Design
Decisions

• Only parallelize computation of non-bonded forces, since that’s most of the
computational load.

• Keep a copy of the full force and coordinate arrays on each node.

• Have each UE redundantly update positions and velocities for the atoms (i.e.,
assume it’s cheaper to redundantly compute these terms than to do them in
parallel and communicate the results).

• Have each UE compute its contributions to the force array and then combine
(or reduce) the UEs’ contributions into a single global force array copied onto
each UE.



CSCI 3366 March 27, 2008

Slide 9

Molecular Dynamics and SPMD — Code

• Slightly more detailed sequential pseudocode in figure 5.7 (p. 134).

• MPI main pseudocode in figure 5.8 (p. 135). Compare to figure 5.7.

• Pseudocode for computation of non-bonded forces in figure 5.9 (p. 136).
Compare to sequential pseudocode in figure 4.4 (p. 72).

• Pseudocode for computation of neighbor list in figure 5.10 (p. 137). Notice
that we exploit the symmetry resulting from Newton’s third law.

• A remaining decision — how to distribute atoms among UEs. Cyclic
distribution is easy and will probably work okay. If not, could do something
more complex — define “owner-computes filter” — boolean function of ID and
loop iteration.

• Notice that we could do this in OpenMP too.

Slide 10

Heat Diffusion Example — Recap

• Previously discussed the problem (what we’re computing and how) and
sketched out how to decompose/analyze it.

• Also decided on overall algorithm structure of Geometric Decomposition.



CSCI 3366 March 27, 2008

Slide 11

Heat Diffusion and Geometric Decomposition, Again

• How to distribute data?

One chunk per UE will probably work well. (Note that for other problems it
might not.) Might be nice to include in data structure a place to store values
from neighboring chunks, as described in Distributed Array.

• How to synchronize/communicate?

With shared memory, just need barrier synchronization.

With distributed memory, need to exchange values with neighbor UEs, also
perform reduction.

Slide 12

Design of Program for Heat Diffusion

• Finally, we turn the design into code, probably using patterns from Supporting
Structures design space, and possibly some information/understanding from
Implementation Mechanisms (to be discussed later).

• Based on previous design steps, consider Loop Parallelism and/or SPMD.
Decide based mostly on target platform.



CSCI 3366 March 27, 2008

Slide 13

Heat Diffusion and Loop Parallelism

• Key design decision: Parallelize both computationally intensive loops (to
compute new values, find maximum difference between old and new values).
How to deal with shared variables is fairly straightforward.

• Code on “Sample programs” page . . .

Slide 14

Heat Diffusion and SPMD

• Key design decision: Distribute both of the large arrays (uk, ukp1). This
more or less forces/implies how to divide up the computation:

– Have each UE initialize its local section.

– Have each UE compute new values for points in its local section of ukp1.

– Have each UE compute a local maximum for differences between old and
new values, and then use reduction to get a global maximum.

• Code on “Sample programs” page . . .

• Notice that we could do this in OpenMP too.



CSCI 3366 March 27, 2008

Slide 15

A Little About Homework 3

• (See homework writeup on Web for details.)

Slide 16

Minute Essay

• Which of the Algorithm Structure patterns we talked about seems like a good
fit for the “game of life” program as described? (Choices include Task
Parallelism (like the numerical integration example), Divide and Conquer,
Geometric Decomposition (like the heat equation), Recursive Data, Pipeline,
and Event-Based Coordination.)

• What other pattern(s) we’ve talked about recently seem like they might be
useful?



CSCI 3366 March 27, 2008

Slide 17

Minute Essay Answer

• Geometric Decomposition seems like a good fit.

• Distributed Array should also be useful, for the distributed-memory version
anyway.


