
CSCI 3366 April 22, 2008

Slide 1

Administrivia

• (None?)

Slide 2

Example Application: Matrix Multiplication

• Basic problem is straightforward: For two N by N matrices A and B,
compute the matrix product C with elements defined thus (assuming 0-based
indexing):

ci,j =

N−1∑

k=0

ai,k · bk,j

(Actually A and B don’t have to be square and the same size, but for the
moment let’s assume they are.)

• Simple approach to calculating this is obvious — just do the above calculation
for all i and j between 0 and N − 1.

• Less obvious approach: Decompose A, B, and C into blocks and think of
the calculation in terms of these blocks (equation similar to the above, but for
blocks rather than individual elements).

Why? often makes better use of cache and therefore is faster.

CSCI 3366 April 22, 2008

Slide 3

Parallelization — Understanding the Problem

• In the simple approach, the code is just nested loops over the elements of C .
A block-based approach is slightly more complicated, but not a great deal.

(Look at example code, performance results.)

• Consider parallelizing for first shared-memory and then distributed-memory
environments.

Slide 4

Parallelization — Finding Concurrency

• Obvious decomposition for simple approach is task-based, with one task per
point. Tasks are completely independent.

• For block-based approach, may make more sense to think in terms of
decomposing data into blocks; then tasks correspond to computing blocks
of C . Again, though, they’re independent.

CSCI 3366 April 22, 2008

Slide 5

Parallelization — Algorithm Structure (Shared Memory)

• For the simple approach, we have many mostly-independent tasks, forming a
flat set rather than a hierarchy, so Task Parallelism seems like a good choice.
Block-based program is similar.

• Key design decision is how to assign tasks to UEs.

• Probably makes sense to group tasks by rows rather than individual points
and to use a simple static assignment of tasks to UEs, and group tasks by —
what? for simple approach, two obvious choices; for block-based approach,
more. Could try several and see which seems to work best.

Slide 6

Parallelization — Supporting Structures and Code
(Shared Memory)

• For program structure, Loop Parallelism makes sense.

• Code in OpenMP is very straightforward (see example code).

CSCI 3366 April 22, 2008

Slide 7

Parallelization — Algorithm Structure (Distributed
Memory)

• For distributed memory we have to think about how to distribute C and how to
duplicate/distribute A and B. Might work better to think in terms of
block-based approach and data decomposition — so Geometric
Decomposition might be a better fit.

• Key design decisions here are how to decompose data and assign chunks to
UEs, and then how to manage synchronization/communication for update
operation.

• Probably makes sense to decompose data so we can assign one block of C
to each UE — amount of work per block is pretty much constant.

Slide 8

Parallelization — Algorithm Structure (Distributed
Memory), Continued

• For each block of C , computation can be thought of a sequence of update
operations, each involving a different combination of blocks of A and B.

(Compare how this fits overall idea of Geometric Decomposition with how
heat-diffusion example fits.)

• This tells us what kind of communication we need. (Simple approach is to
broadcast two blocks at each step, one for “row” and one for “column”. More
complex, but more efficient, version involves rotating blocks among
processes.)

CSCI 3366 April 22, 2008

Slide 9

Parallelization — Supporting Structures (Distributed
Memory)

• For program structure, we probably want SPMD (especially if using MPI or
similar programming environment).

• Distributed Array is relevant, especially for parts of sample/test program that
initialize and print array (since they use each array element’s global indices).

Slide 10

Parallelization — Code (Distributed Memory)

• If we distribute all three arrays (which seems like a good idea), we have to
make changes in code to initialize and print as well as matrix-multiplication.
As is often the case with programs using Distributed Array, the ideas are
simple but the code inclined to be messy.

• For actual multiplication, each process will update one “chunk”, doing the
same computation done in the block-based sequential program, but with
communication operations to broadcast two blocks per step.

• Look at example code

CSCI 3366 April 22, 2008

Slide 11

Minute Essay

• Is there anything we could talk about in the next two classes that would help
with your project?

