CSCI 3366 April 29, 2008

Administrivia

e Sample solutions for homeworks coming soon (I hope).

Slide 1

(A Little About Multithreaded Programming with POSIX)

Threads

e POSIX threads (“pthreads”): widely-available set of functions for
multithreaded programming, callable from C/C++.

® Same ideas as multithreaded programming with OpenMP and Java, but not
Slide 2 as nicely packaged (my opinion). Might be more widely available than
OpenMP compilers, though.

CSCI 3366 April 29, 2008

POSIX Threads — UE Management

e Create a new thread with pthread_create (), specifying function to
execute and a single argument. (Yes, this is restrictive — but the single
argument could point to a complicated data structure.)

e Thread continues until function terminates. Best to end with call to

Slide 3 pthread_exit().

POSIX Threads — Synchronization

e pthread_join () waits until another thread finishes — similarto join

in Java’s Thread class.

e Various synchronization mechanisms:

— Mutexes (locks): pthread mutex_init(),
Slide 4 pthread mutex_destroy(), pthreadmutex_lock(),

pthread mutex_unlock().

— Condition variables: pthread_cond_init (),
pthread_cond_destroy(), pthread_cond wait(),
pthread_cond_signal().

— Semaphores: sem_init (), sem_.destroy (), semwait(),

sem_post ().

CSCI 3366

Slide 5

Slide 6

April 29, 2008

POSIX Threads — Communication

As with other multithreaded programming environments we’ve looked at,
conceptually all threads share access to a single memory space.

In terms of scoping, though, each thread has access to:

— Any global variables (shared with other threads).

— lts single argument (potentially shared with other threads).

— Any local variables (not shared with other threads — since every call to
function creates a new copy).

POSIX Threads — Simple Examples

e “Hello world” example.

e “Hello world” example with delay (to illustrate synchronization).

o Numerical integration example.

CSCI 3366 April 29, 2008

A Little About Distributed-Memory Programming in Java\

e Java doesn’t exactly provide explicit support for distributed-memory parallel
programming.

e However, similar effects can be achieved with multiple Java programs on
different machines communicating via socket-to-socket connections and with
Slide 7 RMI.

Distributed-Memory Programming in Java Using Sockets

e Client/server model:

— Server sets up “server socket” specifying port number, then waits to
accept connections. Connection generates socket.

— Client connects to server by giving name/IPA and port number —
Slide 8 generates a socket.

— On each side, get input/output streams for socket. Program must define
protocol for the two sides to communicate.

CSCI 3366 April 29, 2008

Distributed-Memory Programming in Java Using RMI

Motivation — for client/server applications, can be annoying to have to design

your own protocol.

Instead, idea is to define “remote objects” that can be treated (at program
level) like any other objects — invoke methods.

Slide 9 e Typical use in client/server program:

— Server creates some remote objects and “registers” them.

— Clients look up server’s remote objects and invoke their methods.

— Both sides can pass around references to other remote objects.

e Dynamic code loading possible too.

Example — yet another version of simplified generic master/worker program.

. J

Distributed-Memory Programming in Java — RMI, Quick
How-To

e Define a class for remote objects:
— Define interface that extends Remote
— Define class that implements that interface, extends a Java “remote object”
class. Can also include other methods, only available locally.
Slide 10 — Write code using classes — if using as remote object, reference interface;

otherwise can reference class.

o Compile and execute:
— Compile as usual. (Prior to Java 1.5, an extra step was required to
generate “stubs” to be used in communicating with remote objects as
remote objects.

— Make classes network-accessible.

— Start rmiregistry.

. J

CSCI 3366

Slide 11

Slide 12

April 29, 2008

-

— Run server and clients as usual.

Distributed-Memory Programming in Java — Example

e Example — simplified generic master/worker program, similar to the versions

in OpenMP and MPI earlier this semester.

e \ersion using sockets is relatively straightforward — server creates a new
thread for each client, only tricky bits are in making sure things are shut down
properly. Notice use of synchronized in code to ensure thread-safe

access to shared variables.

e Version using RMI is also straightforward, again except for code to shut down
properly. Notice use of synchronized in code to ensure thread-safe
access to shared variables; experiment suggests that RMI may use multiple

threads to process concurrent requests.

CSCI 3366 April 29, 2008

Distributed-Memory Java and Implementation
Mechanisms
e Very similar to MPI, really — UE management is outside the scope of the
libraries, synchronization is implicit. For sockets, communication is explicit; for
RMI, implicit.
Slide 13
e None —signiin.
Slide 14

