
CSCI 3366 April 29, 2008

Slide 1

Administrivia

• Sample solutions for homeworks coming soon (I hope).

Slide 2

A Little About Multithreaded Programming with POSIX
Threads

• POSIX threads (“pthreads”): widely-available set of functions for
multithreaded programming, callable from C/C++.

• Same ideas as multithreaded programming with OpenMP and Java, but not
as nicely packaged (my opinion). Might be more widely available than
OpenMP compilers, though.



CSCI 3366 April 29, 2008

Slide 3

POSIX Threads — UE Management

• Create a new thread with pthread create(), specifying function to
execute and a single argument. (Yes, this is restrictive — but the single
argument could point to a complicated data structure.)

• Thread continues until function terminates. Best to end with call to
pthread exit().

Slide 4

POSIX Threads — Synchronization

• pthread join() waits until another thread finishes — similar to join
in Java’s Thread class.

• Various synchronization mechanisms:

– Mutexes (locks): pthread mutex init(),
pthread mutex destroy(), pthread mutex lock(),
pthread mutex unlock().

– Condition variables: pthread cond init(),
pthread cond destroy(), pthread cond wait(),
pthread cond signal().

– Semaphores: sem init(), sem destroy(), sem wait(),
sem post().



CSCI 3366 April 29, 2008

Slide 5

POSIX Threads — Communication

• As with other multithreaded programming environments we’ve looked at,
conceptually all threads share access to a single memory space.

• In terms of scoping, though, each thread has access to:

– Any global variables (shared with other threads).

– Its single argument (potentially shared with other threads).

– Any local variables (not shared with other threads — since every call to
function creates a new copy).

Slide 6

POSIX Threads — Simple Examples

• “Hello world” example.

• “Hello world” example with delay (to illustrate synchronization).

• Numerical integration example.



CSCI 3366 April 29, 2008

Slide 7

A Little About Distributed-Memory Programming in Java

• Java doesn’t exactly provide explicit support for distributed-memory parallel
programming.

• However, similar effects can be achieved with multiple Java programs on
different machines communicating via socket-to-socket connections and with
RMI.

Slide 8

Distributed-Memory Programming in Java Using Sockets

• Client/server model:

– Server sets up “server socket” specifying port number, then waits to
accept connections. Connection generates socket.

– Client connects to server by giving name/IPA and port number —
generates a socket.

– On each side, get input/output streams for socket. Program must define
protocol for the two sides to communicate.



CSCI 3366 April 29, 2008

Slide 9

Distributed-Memory Programming in Java Using RMI

• Motivation — for client/server applications, can be annoying to have to design
your own protocol.

• Instead, idea is to define “remote objects” that can be treated (at program
level) like any other objects — invoke methods.

• Typical use in client/server program:

– Server creates some remote objects and “registers” them.

– Clients look up server’s remote objects and invoke their methods.

– Both sides can pass around references to other remote objects.

• Dynamic code loading possible too.

• Example — yet another version of simplified generic master/worker program.

Slide 10

Distributed-Memory Programming in Java — RMI, Quick
How-To

• Define a class for remote objects:

– Define interface that extends Remote

– Define class that implements that interface, extends a Java “remote object”
class. Can also include other methods, only available locally.

– Write code using classes — if using as remote object, reference interface;
otherwise can reference class.

• Compile and execute:

– Compile as usual. (Prior to Java 1.5, an extra step was required to
generate “stubs” to be used in communicating with remote objects as
remote objects.

– Make classes network-accessible.

– Start rmiregistry.



CSCI 3366 April 29, 2008

Slide 11

– Run server and clients as usual.

Slide 12

Distributed-Memory Programming in Java — Example

• Example — simplified generic master/worker program, similar to the versions
in OpenMP and MPI earlier this semester.

• Version using sockets is relatively straightforward — server creates a new
thread for each client, only tricky bits are in making sure things are shut down
properly. Notice use of synchronized in code to ensure thread-safe
access to shared variables.

• Version using RMI is also straightforward, again except for code to shut down
properly. Notice use of synchronized in code to ensure thread-safe
access to shared variables; experiment suggests that RMI may use multiple
threads to process concurrent requests.



CSCI 3366 April 29, 2008

Slide 13

Distributed-Memory Java and Implementation
Mechanisms

• Very similar to MPI, really — UE management is outside the scope of the
libraries, synchronization is implicit. For sockets, communication is explicit; for
RMI, implicit.

Slide 14

Minute Essay

• None — sign in.


