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Administrivia

• Sample solutions for homeworks coming soon (I hope).
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A Little About Multithreaded Programming with POSIX
Threads

• POSIX threads (“pthreads”): widely-available set of functions for
multithreaded programming, callable from C/C++.

• Same ideas as multithreaded programming with OpenMP and Java, but not
as nicely packaged (my opinion). Might be more widely available than
OpenMP compilers, though.
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POSIX Threads — UE Management

• Create a new thread with pthread create(), specifying function to
execute and a single argument. (Yes, this is restrictive — but the single
argument could point to a complicated data structure.)

• Thread continues until function terminates. Best to end with call to
pthread exit().
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POSIX Threads — Synchronization

• pthread join() waits until another thread finishes — similar to join
in Java’s Thread class.

• Various synchronization mechanisms:

– Mutexes (locks): pthread mutex init(),
pthread mutex destroy(), pthread mutex lock(),
pthread mutex unlock().

– Condition variables: pthread cond init(),
pthread cond destroy(), pthread cond wait(),
pthread cond signal().

– Semaphores: sem init(), sem destroy(), sem wait(),
sem post().
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POSIX Threads — Communication

• As with other multithreaded programming environments we’ve looked at,
conceptually all threads share access to a single memory space.

• In terms of scoping, though, each thread has access to:

– Any global variables (shared with other threads).

– Its single argument (potentially shared with other threads).

– Any local variables (not shared with other threads — since every call to
function creates a new copy).
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POSIX Threads — Simple Examples

• “Hello world” example.

• “Hello world” example with delay (to illustrate synchronization).

• Numerical integration example.
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A Little About Distributed-Memory Programming in Java

• Java doesn’t exactly provide explicit support for distributed-memory parallel
programming.

• However, similar effects can be achieved with multiple Java programs on
different machines communicating via socket-to-socket connections and with
RMI.
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Distributed-Memory Programming in Java Using Sockets

• Client/server model:

– Server sets up “server socket” specifying port number, then waits to
accept connections. Connection generates socket.

– Client connects to server by giving name/IPA and port number —
generates a socket.

– On each side, get input/output streams for socket. Program must define
protocol for the two sides to communicate.
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Distributed-Memory Programming in Java Using RMI

• Motivation — for client/server applications, can be annoying to have to design
your own protocol.

• Instead, idea is to define “remote objects” that can be treated (at program
level) like any other objects — invoke methods.

• Typical use in client/server program:

– Server creates some remote objects and “registers” them.

– Clients look up server’s remote objects and invoke their methods.

– Both sides can pass around references to other remote objects.

• Dynamic code loading possible too.

• Example — yet another version of simplified generic master/worker program.
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Distributed-Memory Programming in Java — RMI, Quick
How-To

• Define a class for remote objects:

– Define interface that extends Remote

– Define class that implements that interface, extends a Java “remote object”
class. Can also include other methods, only available locally.

– Write code using classes — if using as remote object, reference interface;
otherwise can reference class.

• Compile and execute:

– Compile as usual. (Prior to Java 1.5, an extra step was required to
generate “stubs” to be used in communicating with remote objects as
remote objects.

– Make classes network-accessible.

– Start rmiregistry.
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– Run server and clients as usual.
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Distributed-Memory Programming in Java — Example

• Example — simplified generic master/worker program, similar to the versions
in OpenMP and MPI earlier this semester.

• Version using sockets is relatively straightforward — server creates a new
thread for each client, only tricky bits are in making sure things are shut down
properly. Notice use of synchronized in code to ensure thread-safe
access to shared variables.

• Version using RMI is also straightforward, again except for code to shut down
properly. Notice use of synchronized in code to ensure thread-safe
access to shared variables; experiment suggests that RMI may use multiple
threads to process concurrent requests.
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Distributed-Memory Java and Implementation
Mechanisms

• Very similar to MPI, really — UE management is outside the scope of the
libraries, synchronization is implicit. For sockets, communication is explicit; for
RMI, implicit.
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Minute Essay

• None — sign in.


