
CSCI 3366 January 27, 2009

Slide 1

Administrivia

• Homework 1 on Web; first part due next Thursday.

Slide 2

OpenMP

• Early work on message-passing programming resulted in many competing

programming environments — but eventually, MPI emerged as a standard.

• Similarly, many different programming environments for shared-memory

programming, but OpenMP may be emerging as a standard.

• In both cases, idea was to come up with a single standard, then allow many

implementations. For MPI, standard defines concepts and library. For

OpenMP, standard defines concepts, library, and compiler directives.

• First release 1997 (for Fortran, followed in 1998 by version for C/C++).

• Several production-quality commercial compilers available. Up until very

recently, free compilers were, um, “research software” or in work. Latest

versions of GNU compilers, though, offer support. !!



CSCI 3366 January 27, 2009

Slide 3

What’s an OpenMP Program Like?

• Fork/join model — “master thread” spawns a “team of threads”, which execute

in parallel until done, then rejoin main thread. Can do this once in program, or

multiple times.

• Source code in C/C++/Fortran, with OpenMP compiler directives (#pragma

— ignored if compiling with a compiler that doesn’t support OpenMP) and

(possibly) calls to OpenMP functions.

Compiler must translate compiler directives into calls to appropriate functions

(to start threads, wait for them to finish, etc.)

• A plus — can start with sequential program, add parallelism incrementally —

usually by finding most time-consuming loops and splitting them among

threads.

• Number of threads controlled by environment variable or from within program.

Slide 4

Simple Example / Compiling and Executing

• Look at simple program — hello.c on sample programs page.

• Compile with compiler supporting OpenMP.

• Execute like regular program. Can set environment variable

OMP NUM THREADS to specify number of threads. Default value seems to

be one thread per processor.



CSCI 3366 January 27, 2009

Slide 5

Sidebar — Environment Variables (in bash)

• To set environment variable FOO for the rest of the session:

export FOO=fooval

(To set every time you log in, put in .bash profile.)

• To run bar with a value for FOO:

FOO=fooval bar

Slide 6

How Do Threads Interact?

• With OpenMP, threads share an address space, so they communicate by

sharing variables. (Contrast with MPI, to be discussed next, in which

processes don’t share an address space, so to communicate they must use

messages.)

• Sharing variables is more convenient, may seem more natural.

• However, “race conditions” are possible — program’s outcome depends on

scheduling of threads, often giving wrong results.

What to do? use synchronization to control access to shared variables.

Works, but takes (execution) time, so good performance depends on using it

wisely.



CSCI 3366 January 27, 2009

Slide 7

OpenMP Constructs — Basic Categories

• Parallel regions (“replicate the following in all threads”).

• Worksharing (“divide the following among threads”).

• Data environment (shared variables versus per-thread variables).

• Synchronization.

• Runtime functions / environment variables.

Slide 8

Parallel Regions in OpenMP

• #pragma omp parallel tells compiler to do following block in all

threads (starting team of threads if necessary). Execution doesn’t proceed in

main thread until all are done. Example — “hello world” shown earlier.

• Block must be a “structured block” — block with one point of entry (at top) and

one point of exit (at bottom). In C/C++, this is a statement or statements

enclosed in brackets (with no gotos into / out of block).



CSCI 3366 January 27, 2009

Slide 9

Worksharing Constructs in OpenMP

• #pragma omp parallel for tells compiler to split iterations of

following for loop among threads. By default, main thread doesn’t continue

until all are done, but can override that (might be useful if you have two

consecutive such loops).

• How loop iterations are mapped onto threads — controlled by schedule

clause. More about this later.

• To make different threads do different things — #pragma parallel

sections, etc. (More in standard.)

Slide 10

A Little About Variables in OpenMP

• Most variables are shared by default, including any global variables.

• Some things, though, aren’t — variables within a statement block, stack

(local) variables in subprograms called from parallel region.

• Can specify that each thread gets its own copy with private clause.

firstprivate and lastprivate can be used to start/end with

shared value.

• Can specify that each thread gets its own copy, and copies are combined at

the end, with reduction clause. Operations include sum, product, and/or.

No max or min in C/C++.



CSCI 3366 January 27, 2009

Slide 11

Example — Numerical Integration

• Compute π by integrating
∫ 1

0

4

1+x
2 dx.

• Do this numerically by approximating area under curve by many small

rectangles, computing their area, adding results.

• Sequential program fairly straightforward. (num-int-seq.c on “sample

programs” page).

• “Parallelize” how? (num-int-par.c on “sample programs” page).

Slide 12

Assigning Work to Threads — schedule clause

• static (with optional chunk size) — divide iterations into fixed-size blocks,

distribute evenly among threads.

• dynamic (with optional chunk size) — queue of iterations, threads grab

blocks of iterations until all done.

• guided (with optional chunk size) — like dynamic, but with decreasing

blocks of iterations.

• runtime — get from OMP SCHEDULE environment variable.



CSCI 3366 January 27, 2009

Slide 13

Homework 1 Background

• In Homework 1, you will make a first pass at writing a set of programs (one

using OpenMP, one using MPI, and one using Java) to solve the following

problem. (We’ll talk more about it in class after you’ve tried it.)

• We talked about computing π using numerical integration. Another interesting

(surprising?) approach uses a “Monte Carlo” method:

Consider a square with sides of length 2 (any unit you like), enclosing a circle

of radius 1.

Approximate the area of the circle by “throwing darts” at the square, counting

how many fall within the circle, and calculating the ratio of those within the

circle to the total number.

Model “throwing darts” by using pseudorandom number generator to

generate coordinates of a point.

Slide 14

Minute Essay

• Running the numerical integration example with different numbers of threads

gives different results. Why do you think that happens?



CSCI 3366 January 27, 2009

Slide 15

Minute Essay Answer

• The order in which the partial results (produced by the iterations of the loop to

compute areas of rectangles) are added together depends on the number of

threads and the scheduling — and floating-point arithmetic is not

associative (!).


