
CSCI 3366 January 29, 2009

Slide 1

Administrivia

• Our new multicore machine is up and running! though not extensively tested.

• Reminder: First part of Homework 1 (OpenMP) due Tuesday.

• A request: You will turn in most if not all work for this course by e-mail. Please
do include the name or number of the course in the subject line of your
message, plus something about which assignment it is, to help me get it into
the correct folder for grading.

Slide 2

Minute Essay From Last Lecture

• (Review.)



CSCI 3366 January 29, 2009

Slide 3

OpenMP — Overview (Review)

• Parallel programming environment for shared-memory programming, possibly
emerging as de facto standard.

• Set of extensions to selected sequential programming languages — compiler
directives, library functions.

Slide 4

OpenMP Constructs — Basic Categories

• Parallel regions (“replicate the following in all threads”).

• Worksharing (“divide the following among threads”).

• Data environment (shared variables versus per-thread variables).

• Synchronization.

• Runtime functions / environment variables.



CSCI 3366 January 29, 2009

Slide 5

Library Functions

• omp get num threads, omp set num threads,
omp get thread num — as in examples and appendix.

• omp get wtime — as in examples and appendix.

• Functions to do locking — more about them shortly.

• Functions to do other things — in specification.

Slide 6

Synchronization Constructs

• critical — only one thread at a time executes this block of code.
(Example — synch-2.c on sample programs page.)

• barrier — threads wait here until all have arrived. Implicit barrier at end of
parallel region.

• single — only one thread executes this block.

• Several others — atomic, flush, ordered, master. More about
them in the specification.



CSCI 3366 January 29, 2009

Slide 7

Locks

• omp lock t — declares a lock variable.

• omp init lock, omp destroy lock — create and destroy.

• omp set lock — acquire lock (wait if necessary).

• omp unset lock — release lock.

• Other functions described in specification.

• Example — synch-3.c on sample programs page.

Slide 8

MPI — the Message Passing Interface

• Idea was to come up with a single standard (concepts and library) for
message-passing programs, then allow many implementations. Similar to
language standards (C, C++, etc.). Good for portability.

• MPI Forum — international consortium — began work in 1992. MPI 1.1 and
MPI 2.0 standards defined. Huge! 1.1 specification is 500+ pages.

• Original reference implementation — MPICH (Argonne National Lab).
LAM/MPI (Local Area Multicomputer) is another free implementation. Latest /
most popular may be OpenMPI (installed here).



CSCI 3366 January 29, 2009

Slide 9

What’s an MPI Program Like?

• “SPMD” (Single Program, Multiple Data) model — many processes, all
running the same source code, but each with its own memory space and
each with a different ID. Could take different paths through the code
depending on ID.

• Source code in C/C++/Fortran, with calls to MPI library functions.

• How programs get started isn’t specified by the standard! (for
historical/political reasons — some early target platforms were very
restrictive, would not have supported what academic-CS types wanted).

• (Compare and contrast all of the above with OpenMP.)

Slide 10

MPI — the Message Passing Interface

• Idea was to come up with a single standard (concepts and library) for
message-passing programs, then allow many implementations. Similar to
language standards (C, C++, etc.). Good for portability.

• MPI Forum — international consortium — began work in 1992. MPI 1.1 and
MPI 2.0 standards defined. Huge! 1.1 specification is 500+ pages.

• Original reference implementation — MPICH (Argonne National Lab).
LAM/MPI (Local Area Multicomputer) is another free implementation. Latest /
most popular may be OpenMPI (installed here).



CSCI 3366 January 29, 2009

Slide 11

What’s an MPI Program Like?

• “SPMD” (Single Program, Multiple Data) model — many processes, all
running the same source code, but each with its own memory space and
each with a different ID. Could take different paths through the code
depending on ID.

• Source code in C/C++/Fortran, with calls to MPI library functions.

• How programs get started isn’t specified by the standard! (for
historical/political reasons — some early target platforms were very
restrictive, would not have supported what academic-CS types wanted).

• (Compare and contrast all of the above with OpenMP.)

Slide 12

What’s in the MPI Library?

• Setup and bookkeeping — initialization, cleanup, environment query, etc.

• Data management — pack/unpack, derived data types.

• Point-to-point communication — several varieties, differing mostly in how
much synchronization.

• Collective operations — e.g., broadcast.



CSCI 3366 January 29, 2009

Slide 13

MPI “Communicators”

• (One more thing to define before we can write simple code.)

• MPI allows grouping processes; group plus associated context called a
“communicator”. Makes it easier to write “safe” parallel libraries.

• Predefined communicator MPI COMM WORLD includes all processes.
Programmers can create additional ones.

Slide 14

Simple Examples / Compiling and Executing

• Look at sample program hello.c. (All sample programs from class should
be on the Web, linked from course “sample programs” page, with short
instructions on how to use MPI.)

• We’ll use OpenMPI as installed on the F9 lab machines. There should be
man pages for all commands and functions.

• Compile with mpicc.

• Execute with mpirun.



CSCI 3366 January 29, 2009

Slide 15

Simple (Blocking) Point-to-Point Communication in MPI

• Send with MPI Send — returns as soon as data has been copied to system
buffer, buffer in program can be reused.

• Receive with MPI Recv — waits until message has been received.

• Can use “tags” to distinguish between kinds of messages. Can receive
selectively or not (MPI ANY TAG). Received tag is in returned
MPI Status variable (e.g., status.MPI TAG).

• Can receive from specific sender or from any sender. (MPI ANY SOURCE).
Sender is in returned MPI Status variable (e.g.,
status.MPI SOURCE).

• For MPI Recv, “length” parameter specifies buffer length. Use
MPI Get count to get actual count.

• Look at sample program send-recv.c.

Slide 16

Not-So-Simple Point-to-Point Communication in MPI

• For not-too-long messages and when readability is more important than
performance, MPI Send and MPI Recv are probably fine.

• If messages are long, however, buffering can be a problem, and can even
lead to deadlock. Also, sometimes it’s nice to be able to overlap computation
and communication.

• Therefore, MPI offers several other kinds of send/receive functions —
“synchronous” (blocks both sender and receiver until communication can take
place), “non-blocking” (doesn’t block at all, program must later test/wait for
communication to take place).

(More about these later.)



CSCI 3366 January 29, 2009

Slide 17

Collective Communication in MPI

• “Collective communication” operation — one that involves many processes
(typically all, or all in MPI “communicator”).

• Could implement using point-to-point message passing, but some operations
are common enough to be library functions — broadcast (MPI Bcast),
“reduction” (MPI Reduce), etc.

Slide 18

Minute Essay

• If you add the following lines to sample program send-recv.c, right after
the call to printf() for process 0

buff[0] = 30;
buff[1] = 40;

what does process 1 print?



CSCI 3366 January 29, 2009

Slide 19

Minute Essay Answer

• The same thing as before — the old data has already been sent to process 1
(or at least copied to a system buffer somewhere), so the change doesn’t
affect what happens in process 1.


