
CSCI 3366 February 19, 2009

Slide 1

Administrivia

• Homework 2 on Web; due next Tuesday.

• Office hours schedule on my Web page. T/R afternoon hours will be “open
lab”, in HAS 340. (Probably also some of Wednesday afternoon, subject to
room availability.)

Slide 2

Homework 1 Revisited — Sequential Programs

• First step is probably to run sequential programs a few times. (Using what
machines? what parameters?)

• (Look at some results I generated . . . )

• Do results vary depending on seed? (Yes.)

• Are results better for more samples? (Sometimes.)

• Are results the same for C and Java programs? (No.)

• Does execution time make sense — fairly consistent from run to run, scales
with number of samples? from machine to machine? (Yes.)



CSCI 3366 February 19, 2009

Slide 3

Homework 1 Revisited — Parallel Programs

• My idea was that you would do something very similar to what we did with
numerical integration:

– Consider each “throw a dart” operation as a task.

– Divide tasks among UEs, with each of them computing a local count.

– Combine local counts at the end, and then compute pi.

(Most people did this, pretty much, with a few variations. If you allowed
multiple threads to access shared count without synchronization —
problems?)

• Recall that for numerical integration we got different results for different
numbers of UEs because floating-point addition is not associative. Will that
happen here? (It shouldn’t!)

Slide 4

Homework 1 Revisited — Parallel Programs, Continued

• Probably should repeat sequential-program experiments, right? with same
inputs, but varying numbers of UEs. (How many UEs should we use?)

• And if we do that, results can be — “interesting”?

– Different answers depending on number of UEs. (How can that be? Is the
answer the same for OpenMP, Java, and MPI?)

– Disappointing performance (but maybe not for all three versions?)

• What’s going on? well, maybe we should step back and talk about
“generating random numbers” . . .



CSCI 3366 February 19, 2009

Slide 5

A Little About Random Numbers

• (Canonical reference — discussion in volume 2 of Knuth’s The Art of
Computer Programming. Very mathematical. Other references may be
easier.)

• Many application areas that depend on “random” numbers (whatever we
mean by that) — simulation (of physical phenomena), sampling, numerical
analysis (Monte Carlo methods, e.g.), etc.

• Early on, people used physical methods (currently still in use in lotteries), and
thought about building hardware to generate “random” results. No good
large-scale solution, plus it seemed useful to be able to repeat a calculation.

• Hence need for “random number generator” (RNG) — way to generate
“random” sequences of elements from a given set (e.g., integers or doubles).
Tricky topic. Many early researchers got it wrong. Many application writers
aren’t interested in details.

Slide 6

Desirable Properties of RNG — “Randomness”

• Obviously a key goal, if tricky to define. A thought-experiment definition:

Suppose we’re generating integers in the range from 1 through d, and we let
an observer examine as much of the sequence as desired, and ask for a
guess for any other element in the sequence. If the probability of the guess
being right is more than 1/d, the sequence isn’t random.

• Also want uniformity — for each element, equal probability of getting any of
the possible values.

• For some applications, also need to consider “uniformity in higher
dimensions”: Consider treating sequence as sequence of points in 2D, 3D,
etc., space. Are the points spread out evenly?



CSCI 3366 February 19, 2009

Slide 7

Other Desirable Properties of RNG

• Reproducibility. For some applications, not important, or even bad. But for
many others, good to be able to repeat an experiment. Usually meet this
need with “pseudo random number generator” — algorithm that computes
sequence using initial value (seed) and definition of each element in terms of
previous element(s).

• Speed. Probably not a major goal, though, since most applications involve
lots of other calculations.

• Large cycle length. If every element depends only on the one before, once
you get the initial element again what happens? and usually that’s not good.

Slide 8

Some Popular RNG Algorithms

• Linear Congruential Generator (LCG).

xn = (axn−1 + c) mod m

m constrains cycle length (period) — usually prime or a power of 2. a and c
must be carefully chosen. Results good overall, but least significant bits
“aren’t very random”, which affects how well they work for generating points in
2D, etc., space.

• Lagged-Fibonacci Generator.

xn = (xn−j op xn−k) mod 2m, j < k

where op is + (additive LFG) or× (multiplicative LFG). Again, k must be
carefully chosen. Must also choose “enough” initial elements.



CSCI 3366 February 19, 2009

Slide 9

Some RNG Library Functions

• C library function random and friends: Variant of LFG.

(Where are previous values stored?)

• Java library class Random: LCG.

(Where is previous value stored?)

Slide 10

Homework 1 Results — Recap

• Quality of results can vary depending on seed, but not in any obvious way.
Effect seems to decrease as number of samples increases, however.

• OpenMP program can produce different results for different numbers of
threads.

• OpenMP and Java programs can have very poor performance — times
increase for more threads.

• MPI program can produce different results for different numbers of threads,
but performance is usually good.



CSCI 3366 February 19, 2009

Slide 11

RNGs and Homework 1

• Does this explain why accuracy of result might depend on choice of seed?

• Does it explain why results for C and Java programs are different?

• Does it explain why results can vary depending on number of threads? (Is the
explanation the same for the different programming environments?)

• Does it explain why performance of OpenMP and Java programs can be
disappointing?

Slide 12

Parallelizing RNGs

• RNGs are used in some applications that are compute-intensive and thus
appealing candidates for parallelization.

• How to do this?



CSCI 3366 February 19, 2009

Slide 13

Approaches to Parallelizing RNGs

• Central server — use one UE to generate sequence, have it distribute results
to other UEs or let them request them.

Reproducible? Efficient? Other problems? (Same sequence, but maybe not
distributed same way. Could be inefficient / bottleneck.)

• Cycle division — split elements of original sequence between UEs, having
each UE generate “its” elements. Two basic schemes — “leapfrog” and “cycle
splitting”.

Reproducible? Efficient? Other problems? (Same sequence, split the same
way, but could be other problems – subsequences might not be “random”.
Also could be very inefficient.)

• (Continued on next slide.)

Slide 14

Approaches to Parallelizing RNGs, Continued

• Parameterization — e.g., “cycle parameterization” exploits property that some
RNGs can generate different cycles depending on seed. Idea is to
“parameterize” algorithm so UEs generate different cycles.

Reproducible? Efficient? Other problems? (Depends on being able to
parameterize in a way that cycles don’t overlap. Related to choice of seed in
the first place.)



CSCI 3366 February 19, 2009

Slide 15

Parallel RNG With Distributed Memory

• Thread safety not an issue. But also have no access to shared state, so each
process should probably generate sequence independently.

• “Leapfrog” approach seems attractive.

Naive implementation would just have each process generate whole
sequence and ignore elements it doesn’t want. Good idea? (Sometimes, but
probably not for the Homework 1 problem.)

Knuth includes algorithm for generating just selected elements of LCG, based
on modifying a and c.

• Starting different processes with different seeds seems good. Is there a
situation in which that wouldn’t work? (Can you guarantee that sequences
don’t overlap “too much”?)

Slide 16

Parallel RNG With Shared Memory

• Thread safety an issue, but have access to shared state, which might be
attractive.

• Adaptation of “central server” idea — use regular library function, but ensure
one-at-a-time access. Good idea? (Maybe for some applications, but
probably won’t work well for Homework 1 problem.)

• Other approaches similar to distributed-memory case, but require that each
thread have its own “internal state”. Good idea? doable? (Could be a problem
if using library functions.)



CSCI 3366 February 19, 2009

Slide 17

RNG Functions Revisited

• C library function random and friends: Variant of LFG. Can specify seed,
but internal state apparently hidden.

• C library function drand48 and friends: LCG. Can specify seed. One
variant allows keeping internal state in user-provided buffer.

• Java library class RandomGenerator: LCG. Can specify seed. Not
known whether different instances share internal state, but seems unlikely.

• Or one can write one’s own . . . (And that’s what Homework 2 asks you to do.
But in real-world situations, it’s probably better to investigate good third-party
libraries, commercial or not.)

Slide 18

Improving on Homework 1 Solutions

• How do we improve performance?

(Should be straightforward — any revised algorithm that doesn’t use a shared
state should help.)

• How do we improve accuracy?

(Should be straightforward — any revised algorithm that doesn’t generate the
same sequence for every UE should help at least a little.)

• And how will we know a revised solution is better?

(Measure carefully / systematically.)



CSCI 3366 February 19, 2009

Slide 19

Minute Essay

• What kind of experiments might be useful in figuring out whether a random
sequence is “good” for the Monte Carlo pi problem?


