CSCI 3366 April 23, 2009

Administrivia

o Reminder: Homeworks due, project proposal.

Slide 1

(A Little About Multithreaded Programming with POSIX)

Threads

e POSIX threads (“pthreads”): widely-available set of functions for
multithreaded programming, callable from C/C++.

® Same ideas as multithreaded programming with OpenMP and Java, but not
Slide 2 as nicely packaged (my opinion). Might be more widely available than
OpenMP compilers, though.

CSCI 3366 April 23, 2009

POSIX Threads — UE Management

e Create a new thread with pthread_create (), specifying function to
execute and a single argument. (Yes, this is restrictive — but the single
argument could point to a complicated data structure.)

e Thread continues until function terminates. Best to end with call to

Slide 3 pthread_exit().

POSIX Threads — Synchronization

e pthread_join () waits until another thread finishes — similarto join

in Java’s Thread class.

e Various synchronization mechanisms:

— Mutexes (locks): pthread mutex_init(),
Slide 4 pthread mutex_destroy(), pthreadmutex_lock(),

pthread mutex_unlock().

— Condition variables: pthread_cond_init (),
pthread_cond_destroy(), pthread_cond wait(),
pthread_cond_signal().

— Semaphores: sem_init (), sem_.destroy (), semwait(),

sem_post ().

CSCI 3366

Slide 5

Slide 6

April 23, 2009

POSIX Threads — Communication

As with other multithreaded programming environments we’ve looked at,
conceptually all threads share access to a single memory space.

In terms of scoping, though, each thread has access to:

— Any global variables (shared with other threads).

— lts single argument (potentially shared with other threads).

— Any local variables (not shared with other threads — since every call to
function creates a new copy).

POSIX Threads — Simple Examples

e “Hello world” example.

e “Hello world” example with delay (to illustrate synchronization).

o Numerical integration example.

CSCI 3366

April 23, 2009

Slide 7

e None — signin.

