
CSCI 3366 April 23, 2009

Slide 1

Administrivia

• Reminder: Homeworks due, project proposal.

Slide 2

A Little About Multithreaded Programming with POSIX
Threads

• POSIX threads (“pthreads”): widely-available set of functions for
multithreaded programming, callable from C/C++.

• Same ideas as multithreaded programming with OpenMP and Java, but not
as nicely packaged (my opinion). Might be more widely available than
OpenMP compilers, though.



CSCI 3366 April 23, 2009

Slide 3

POSIX Threads — UE Management

• Create a new thread with pthread create(), specifying function to
execute and a single argument. (Yes, this is restrictive — but the single
argument could point to a complicated data structure.)

• Thread continues until function terminates. Best to end with call to
pthread exit().

Slide 4

POSIX Threads — Synchronization

• pthread join() waits until another thread finishes — similar to join
in Java’s Thread class.

• Various synchronization mechanisms:

– Mutexes (locks): pthread mutex init(),
pthread mutex destroy(), pthread mutex lock(),
pthread mutex unlock().

– Condition variables: pthread cond init(),
pthread cond destroy(), pthread cond wait(),
pthread cond signal().

– Semaphores: sem init(), sem destroy(), sem wait(),
sem post().



CSCI 3366 April 23, 2009

Slide 5

POSIX Threads — Communication

• As with other multithreaded programming environments we’ve looked at,
conceptually all threads share access to a single memory space.

• In terms of scoping, though, each thread has access to:

– Any global variables (shared with other threads).

– Its single argument (potentially shared with other threads).

– Any local variables (not shared with other threads — since every call to
function creates a new copy).

Slide 6

POSIX Threads — Simple Examples

• “Hello world” example.

• “Hello world” example with delay (to illustrate synchronization).

• Numerical integration example.



CSCI 3366 April 23, 2009

Slide 7

Minute Essay

• None — sign in.


