
CSCI 3366 January 28, 2010

Slide 1

Administrivia

• Homework 1 will be on the Web tomorrow. Several parts (one for each

programming environment). First part due next Thursday.

• A request: You will turn in most if not all work for this course by e-mail. Please

include the name or number of the course in the subject line of your message,

plus something about which assignment it is, to help me get it into the correct

folder for grading.

Slide 2

OpenMP — Overview (Review)

• Parallel programming environment for shared-memory programming, possibly

emerging as de facto standard.

• Set of extensions to selected sequential programming languages — compiler

directives, library functions.



CSCI 3366 January 28, 2010

Slide 3

OpenMP Constructs — Basic Categories

• Parallel regions (“replicate the following in all threads”).

• Worksharing (“divide the following among threads”).

• Data environment (shared variables versus per-thread variables).

• Synchronization.

• Runtime functions / environment variables.

Slide 4

Parallel Regions in OpenMP

• #pragma omp parallel tells compiler to do following block in all

threads (starting team of threads if necessary). Execution doesn’t proceed in

main thread until all are done. Example — “hello world” shown earlier.

• Block must be a “structured block” — block with one point of entry (at top) and

one point of exit (at bottom). In C/C++, this is a statement or statements

enclosed in brackets (with no gotos into / out of block).



CSCI 3366 January 28, 2010

Slide 5

Worksharing Constructs in OpenMP

• #pragma omp parallel for tells compiler to split iterations of

following for loop among threads. By default, main thread doesn’t continue

until all are done, but can override that (might be useful if you have two

consecutive such loops).

• How loop iterations are mapped onto threads — controlled by schedule

clause. More about this later.

• To make different threads do different things — #pragma parallel

sections, etc. (More in standard.)

Slide 6

A Little About Variables in OpenMP

• Most variables are shared by default, including any global variables.

• Some things, though, aren’t — variables within a statement block, stack

(local) variables in subprograms called from parallel region.

• Can specify that each thread gets its own copy with private clause.

firstprivate and lastprivate can be used to start/end with

shared value.

• Can specify that each thread gets its own copy, and copies are combined at

the end, with reduction clause. Operations include sum, product, and/or.

No max or min in C/C++.



CSCI 3366 January 28, 2010

Slide 7

Assigning Work to Threads — schedule clause

• static (with optional chunk size) — divide iterations into fixed-size blocks,

distribute evenly among threads.

• dynamic (with optional chunk size) — queue of iterations, threads grab

blocks of iterations until all done.

• guided (with optional chunk size) — like dynamic, but with decreasing

blocks of iterations.

• runtime — get from OMP SCHEDULE environment variable.

Slide 8

Library Functions

• omp get num threads, omp set num threads,

omp get thread num — as in examples and appendix.

• omp get wtime — as in examples and appendix.

• Functions to do locking — more about them shortly.

• Functions to do other things — in specification.



CSCI 3366 January 28, 2010

Slide 9

Example — Numerical Integration

• Compute π by integrating
∫ 1

0

4

1+x
2 dx.

• Do this numerically by approximating area under curve by many small

rectangles, computing their area, adding results.

• Sequential program fairly straightforward. (num-int-seq.c on “sample

programs” page).

• “Parallelize” how? (num-int-par.c on “sample programs” page).

Slide 10

Homework 1 Background

• In Homework 1, you will make a first pass at writing a set of programs (one

using OpenMP, one using MPI, and one using Java) to solve the following

problem. (We’ll talk more about it in class after you’ve tried it.)

• We talked about computing π using numerical integration. Another interesting

(surprising?) approach uses a “Monte Carlo” method:

Consider a square with sides of length 2 (any unit you like), enclosing a circle

of radius 1.

Approximate the area of the circle by “throwing darts” at the square, counting

how many fall within the circle, and calculating the ratio of those within the

circle to the total number.

Model “throwing darts” by using pseudorandom number generator to

generate coordinates of a point.



CSCI 3366 January 28, 2010

Slide 11

Synchronization Constructs

• critical — only one thread at a time executes this block of code.

(Example — synch-2.c on sample programs page.)

• barrier — threads wait here until all have arrived. Implicit barrier at end of

parallel region.

• single — only one thread executes this block.

• Several others — atomic, flush, ordered, master. More about

them in the specification.

Slide 12

Locks

• omp lock t — declares a lock variable.

• omp init lock, omp destroy lock — create and destroy.

• omp set lock — acquire lock (wait if necessary).

• omp unset lock — release lock.

• Other functions described in specification.

• Example — synch-3.c on sample programs page.



CSCI 3366 January 28, 2010

Slide 13

Minute Essay

• Running the numerical integration example with different numbers of threads

gives different results. Why do you think that happens?

Slide 14

Minute Essay Answer

• The order in which the partial results (produced by the iterations of the loop to

compute areas of rectangles) are added together depends on the number of

threads and the scheduling — and floating-point arithmetic is not

associative (!).


