
CSCI 3366 February 2, 2010

Slide 1

Administrivia

• Reminder: First part of Homework 1 (OpenMP program) due Thursday.

Slide 2

Minute Essay From Last Lecture

• (Review answer.)



CSCI 3366 February 2, 2010

Slide 3

MPI — the Message Passing Interface

• Idea was to come up with a single standard (concepts and library) for

message-passing programs, then allow many implementations. Similar to

language standards (C, C++, etc.). Good for portability.

• MPI Forum — international consortium — began work in 1992. MPI 1.1 and

MPI 2.0 standards defined. Huge! 1.1 specification is 500+ pages.

• Original reference implementation — MPICH (Argonne National Lab).

LAM/MPI (Local Area Multicomputer) is another free implementation. Latest /

most popular may be OpenMPI (installed here).

Slide 4

What’s an MPI Program Like?

• “SPMD” (Single Program, Multiple Data) model — many processes, all

running the same source code, but each with its own memory space and

each with a different ID. Could take different paths through the code

depending on ID.

• Source code in C/C++/Fortran, with calls to MPI library functions.

• How programs get started isn’t specified by the (first) standard! (for

historical/political reasons — some early target platforms were very

restrictive, would not have supported what academic-CS types wanted).

• (Compare and contrast all of the above with OpenMP.)



CSCI 3366 February 2, 2010

Slide 5

What’s in the MPI Library?

• Setup and bookkeeping — initialization, cleanup, environment query, etc.

• Data management — pack/unpack, derived data types.

• Point-to-point communication — several varieties, differing mostly in how

much synchronization.

• Collective operations — e.g., broadcast.

Slide 6

MPI “Communicators”

• (One more thing to define before we can write simple code.)

• MPI allows grouping processes; group plus associated context called a

“communicator”. Makes it easier to write “safe” parallel libraries.

• Predefined communicator MPI COMM WORLD includes all processes.

Programmers can create additional ones.



CSCI 3366 February 2, 2010

Slide 7

Simple Examples / Compiling and Executing

• Look at sample program hello.c. (All sample programs from class should

be on the Web, linked from course “sample programs” page, with short

instructions on how to use MPI.)

• We’ll use OpenMPI as installed on the F11 lab machines. There should be

man pages for all commands and functions.

• Compile with mpicc.

• Execute with mpirun.

Slide 8

Simple (Blocking) Point-to-Point Communication in MPI

• Send with MPI Send — returns as soon as data has been copied to system

buffer, buffer in program can be reused.

• Receive with MPI Recv — waits until message has been received.

• Can use “tags” to distinguish between kinds of messages. Can receive

selectively or not (MPI ANY TAG). Received tag is in returned

MPI Status variable (e.g., status.MPI TAG).

• Can receive from specific sender or from any sender. (MPI ANY SOURCE).

Sender is in returned MPI Status variable (e.g.,

status.MPI SOURCE).

• For MPI Recv, “length” parameter specifies buffer length. Use

MPI Get count to get actual count.

• Look at sample program send-recv.c.



CSCI 3366 February 2, 2010

Slide 9

Not-So-Simple Point-to-Point Communication in MPI

• For not-too-long messages and when readability is more important than

performance, MPI Send and MPI Recv are probably fine.

• If messages are long, however, buffering can be a problem, and can even

lead to deadlock. Also, sometimes it’s nice to be able to overlap computation

and communication.

• Therefore, MPI offers several other kinds of send/receive functions —

“synchronous” (blocks both sender and receiver until communication can take

place), “non-blocking” (doesn’t block at all, program must later test/wait for

communication to take place).

(More about these later.)

Slide 10

Collective Communication in MPI

• “Collective communication” operation — one that involves many processes

(typically all, or all in MPI “communicator”).

• Could implement using point-to-point message passing, but some operations

are common enough to be library functions — broadcast (MPI Bcast),

“reduction” (MPI Reduce), etc.



CSCI 3366 February 2, 2010

Slide 11

Numerical Integration, Revisited

• Recall numerical integration example, sequential version.

• Before talking about how to parallelize using MPI, let’s try to be explicit about

what we did to parallelize with OpenMP, as an example of how to think about

designing a parallel application . . .

Slide 12

Numerical Integration, Continued

• Starting point is an understanding of the problem/computation. Pretty simple

here, no?

• First step in developing a parallel version is to break the computation down

into the smallest “tasks” that can execute concurrently. Here, that’s the

iterations of the main computation loop.

• Next step is to consider how these tasks interact — are there logic/control

dependencies? data dependencies? shared data? Here, the tasks are all

independent except that they share some variables — so if we can manage

the shared data, we can execute them in any order we want — including

concurrently. We just found some “exploitable concurrency”.



CSCI 3366 February 2, 2010

Slide 13

Numerical Integration, Continued

• Next step is to develop a strategy for taking advantage of this potential for

concurrent execution.

• For that, it can help to try to use one of a few very common strategies (which

our book captures as patterns). This example fits the simplest one (Task

Parallelism).

Slide 14

Numerical Integration, Continued

• Key elements of (Task Parallelism) strategy, as they apply here:

– Split “tasks” (loop iterations) among UEs as evenly as possible, since

they’re all the same size.

– Make sure every UE has its own copy of work variable x.

– Manage the shared variable sum as for “reduction operations” — give

each UE its own local variable, combine at the end.

• Final step is to turn the strategy into code — which we already did in OpenMP.



CSCI 3366 February 2, 2010

Slide 15

Numerical Integration in MPI

• Now figure out how to apply the overall strategy using MPI. Key difference is

lack of shared memory — means we don’t have problems with threads

stepping on shared work variables, but we have to work harder to combine

partial results.

• Sample program num-int-par.c.

Slide 16

Minute Essay

• If you add the following lines to sample program send-recv.c, right after

the call to printf() for process 0

buff[0] = 30;

buff[1] = 40;

what does process 1 print?



CSCI 3366 February 2, 2010

Slide 17

Minute Essay Answer

• The same thing as before — the old data has already been sent to process 1

(or at least copied to a system buffer somewhere), so the change doesn’t

affect what happens in process 1.


