
CSCI 3366 February 4, 2010

Slide 1

Administrivia

• Reminder: First installment of Homework 1 (OpenMP program) due today (at

11:59pm). Next installment (MPI program) due Tuesday.

(If you started from program num-int-par-spmd-*.c on the sample

programs page — that was not the code we looked at in class, and it’s not the

code I intended you to start from. I’ve temporarily removed it and suggest that

you try again (and you can turn the code in tomorrow for full credit).)

Slide 2

Minute Essay From Last Lecture

• (Review.)

• Comments/questions from previous minute essays:

How do multithreaded programs adapt to varying numbers of cores? Do these

programs run worse on single-core systems? (It depends, and sometimes!)

Why was parallel computing “on the horizon” for so long? (Good question!

probably has something to do with continued increase in single-processor

speed, though.)



CSCI 3366 February 4, 2010

Slide 3

Parallel Programming in Java

• Java supports multithreaded (shared-memory parallel) programming as part

of the language — synchronized keyword, wait and notify

methods of Object class, Thread class. Programs that use the GUI

classes (AWT or Swing) multithreaded under the hood. Justification probably

has more to do with hiding latency than HPC, but still useful, and recent

versions (5.0 and beyond) includes much useful library stuff.

• Java also provides support for forms of distributed-memory programming,

through library classes for networking, I/O (java.nio), and Remote

Method Invocation (RMI).

Slide 4

What Does A Multithreaded Java Program Look Like?

• Easy answer: Like a regular Java program. (In fact, any program with a

GUI . . . )

• Programming model: All threads share a common address space.

Programmer is responsible for creating threads, providing synchronization,

etc.



CSCI 3366 February 4, 2010

Slide 5

Creating Threads in Java

• Threads are all instances of Thread class (or a subclass). Pre-5.0, two

ways to create threads:

– Create a subclass of Thread (frowned on by o-o purists).

– Create a Thread using an object that implements Runnable

(preferable).

Either way, run method (of subclass of Thread, or of Runnable)

contains code for thread to execute.

• Start thread with start method. Can wait for it to finish with join.

• “Hello world” example (Hello1.java and Hello2.java on sample

programs page). (Other methods in java.util.concurrency — see

sample programs Hello3.java, Hello4.java, Hello5.java.)

Slide 6

Java from the Command Line

• Most of you probably use Eclipse to write Java programs. You can do that for

this course too, but for this course you might prefer to run them from the

command line (to make it easier to supply command-line arguments if nothing

else). Command to use is java, followed by class name and any arguments.

• You can also write them using your favorite text editor compile from the

command line. Command to compile is javac.



CSCI 3366 February 4, 2010

Slide 7

Shared Variables in Java

• Code executed by a thread is some object’s run method. Access to

variables is consistent with usual Java scoping — class/instance variables,

parameters, etc.

• As we noted before, though, simultaneous access to shared variables can be

risky, however. So . . .

Slide 8

Synchronization in Java

• Interaction among threads in Java based on “monitor” idea (Hoare (1975) and

Brinch Hansen (1975)).

• Every object has implicit lock; synchronized keyword means “only run

this when you have the relevant lock” — if another thread has the lock, wait.

Can be used to ensure one-at-a-time access to critical variables.

“Relevant lock”? For synchronized methods, lock for object (instance

methods) or class (static methods). For synchronized blocks, you specify the

object.

Example — HelloSynch*.java on sample programs page.

• wait and notify methods allow more interesting kinds of coordination.

But first . . .



CSCI 3366 February 4, 2010

Slide 9

Numerical Integration Example, Revisited

• How to parallelize using Java? well, first must rewrite in Java

(NumIntSeq.java on sample programs page).

• Now rewrite to use multiple threads, based on same strategy we used for

OpenMP — split loop iterations among threads, give each its own copy of

work variables, compute sum based on “reduction” idea. Some things must

be done more explicitly in Java (making the program in some ways more like

MPI’s SPMD model). See NumIntPar.java on sample programs page.

Slide 10

Minute Essay

• synchronized has benefits — avoiding multiple threads changing a

shared variable at the same time. What risks/disadvantages can you imagine

that it might have?



CSCI 3366 February 4, 2010

Slide 11

Minute Essay Answer

• Among the possible problems are the possibility of deadlock, and

performance that’s worse than it needs to be.


