
CSCI 3366 February 16, 2010

Slide 1

Administrivia

• Reminder: Homework 1 due today (MPI part) and Thursday (Java part).

Slide 2

Minute Essay From Last Lecture

• (Review sample answer.)

• Are race conditions a problem if methods are synchronized? (Not if it’s done

right!)

• Could one thread update a variable and another thread not “see” the updated

variable? (Not if all access is in synchronized methods.)

• “What happens if threads get out of order?” (You’re supposed to make that

not happen.)



CSCI 3366 February 16, 2010

Slide 3

Synchronization in Java, Continued

• synchronized methods/blocks can be used to ensure that only one

thread at a time accesses some shared variable.

• For more complex synchronization problems, can use wait and notify

(or notifyAll):

wait suspends executing thread (adds to “wait set”).

notify wakes up one thread from the wait set. notifyAll wakes up all

threads. Waked-up thread(s) then compete to reacquire lock and continue

execution.

Can only be done from within synchronized method/block.

Typical idiom — loop to check condition, wait.

• Example — bounded buffer class (BoundedBuffer.java,

TestBoundedBuffer.java on sample programs page).

Slide 4

Controlling Threads in Java

• Preferred method of controlling one thread from another uses “interrupted”

status. (Early version of Java provided other methods, e.g., stop — now

deprecated.)

• Set status with interrupt (instance method).

• Check status with isInterrupted (instance method) or

interrupted (static method), or by catching

InterruptedException thrown by wait, sleep, join, etc.

• Example — bounded buffer test program

(TestBoundedBuffer.java on sample programs page).



CSCI 3366 February 16, 2010

Slide 5

Features for Multithreading Added in Java 5.0

• Lots of stuff for concurrent programming added in Java 5.0 (a.k.a. 1.5). Short

examples in later versions of “hello world” program (Hello3.java,

Hello4.java, Hello5.java on sample programs page.

• Look at API for java.util.concurrent for more . . .

Slide 6

Not-So-Simple Point-to-Point Communication in MPI,
Again

• For not-too-long messages and when readability is more important than

performance, MPI Send and MPI Recv are probably fine.

• If messages are long, however, buffering can be a problem, and can even

lead to deadlock. Also, sometimes it’s nice to be able to overlap computation

and communication.

• Therefore, MPI offers several other kinds of send/receive functions, including:

– Synchronous (MPI Ssend, MPI Recv) — blocks both sender and

receiver until communication can occur.

– Non-blocking send/receive (MPI Isend, MPI Irecv, MPI Wait) —

doesn’t block, program must explicitly test/wait.

– Which is faster/better? probably best to try them and find out. (Sample

programs exchange*.)



CSCI 3366 February 16, 2010

Slide 7

Minute Essay

• This wraps up the quick PAD I-level tour of our three environments. Any

questions at this point?


