
CSCI 3366 February 18, 2010

Slide 1

Administrivia

• Reminder: Homework 1 due today (Java part). I plan to talk about this

assignment next class, so you need to turn all parts in by then.

Slide 2

A Few Words About Design Patterns

• Title of our book includes the word “patterns”.

• What do we mean? “Design patterns”.



CSCI 3366 February 18, 2010

Slide 3

A Few (More) Words About Design Patterns

• Idea originated with architect Christopher Alexander (first book 1977). Briefly

— look for problems that have to be solved over and over, and try to come up

with “expert” solution, write it in a form accessible to others. Usually this

means adopting “pattern format” to use for all patterns. Characteristics of a

good pattern:

– Neat balancing of competing “forces” (tradeoffs).

– Name either tells you what it’s about, or is a good addition to vocabulary.

– “Aha!” aspect.

• First used in CS in OOD/OOP, about 1987. Really started to take off in OO

community with “Gang of Four” book (Gamma, Helms, Johnson, and

Vlissides; 1995). Now can find people writing patterns in many, many areas.

• Simple low-level example — iterator.

Slide 4

“A Pattern Language for Parallel Programming”?

• Goal of our book (and preceding work) — apply this idea in parallel

computing.

• We started out looking for patterns representing high-level structures for

parallel programs, thinking there might be a dozen of them.

• At some point we realized we also wanted to talk about how you get from the

original problem to one of these structures — i.e., how do expert parallel

programmers think about how to decompose a problem, etc.? and also about

commonly-occurring data structures and program structures, and how to map

high-level designs/structures into real programming environments.

• After much thought and discussion . . .



CSCI 3366 February 18, 2010

Slide 5

“A Pattern Language for Parallel Programming”,
Continued

• Eventually — four-layer “pattern language”. (Notice that “pattern language”

connotes common vocabulary more than grammatical structure. Not a

programming language!)

• Currently being revised/extended, primarily by Mattson and a group at UC

Berkeley.

Slide 6

Overall Organization of Our Pattern Language

• Four “design spaces” corresponding to phases in design.

– Finding Concurrency — how to decompose problems, analyze

decomposition.

– Algorithm Structure — high-level program structures.

– Supporting Structures — program structures, data structures.

– Implementation Mechanisms — generic discussion of programming

environment “building blocks”.

• Idea is that you start at the top, work your way down, possibly with some

backtracking.



CSCI 3366 February 18, 2010

Slide 7

Finding Concurrency — Preview

• Decomposition patterns (Task Decomposition, Data Decomposition): Break

problem into tasks that maybe can execute concurrently.

• Dependency analysis patterns (Group Tasks, Order Tasks, Data Sharing):

Organize tasks into groups, analyze dependencies among them.

• Design Evaluation: Review what you have so far, possibly backtrack.

Slide 8

Algorithm Structure — Preview

• Task Parallelism — decompose problem into lots of tasks, independent or

nearly so. Example: numerical integration.

• Divide and Conquer — decompose recursively as in divide-and-conquer

algorithms. Examples: quicksort, mergesort.

• Geometric Decomposition — decompose based on data (by rows, by

columns, etc.). Example: Mesh-based computation.

• Recursive Data — rethink computation to expose unexpected concurrency.

Ignore for now.

• Pipeline — decompose based on assembly-line analogy.

• Event-Based Coordination — decompose problem into entities interacting

asynchronously.



CSCI 3366 February 18, 2010

Slide 9

Supporting Structures — Preview

• Program structure patterns:

– SPMD (Single Program, Multiple Data) — “like an MPI program”.

– Loop Parallelism — “like an OpenMP program”.

– Master/Worker — like the name suggests.

– Fork/Join — when none of the others fits.

• Data structure patterns:

– Shared Data — generic advice for dealing with data dependencies.

– Shared Queue — example of applying Shared Data).

– Distributed Array.

Slide 10

Implementation Mechanisms — Preview

• Generic discussion of “building blocks” for parallel programming — analogous

to assignment, if/then/else, loops in procedural programming languages.

(Can think of this as “what basic questions do I ask about a new parallel

programming environment?”)

• Three basic categories:

– UE management.

– Synchronization.

– Communication.



CSCI 3366 February 18, 2010

Slide 11

Example Applications

• Before starting on Finding Concurrency patterns — two example applications

to be used as running examples.

Slide 12

Example — Molecular Dynamics

• Goal is to simulate what happens to large molecule. Of interest, e.g., in

modeling how a drug interacts with a protein.

• Approach is to treat molecule as a collection of balls (atoms) connected by

springs (chemical bonds). Then do “standard time-stepping” — divide time

into discrete steps, and at each step use classical mechanics to figure out

new positions for atoms based on current positions and forces among them.

In more details . . .



CSCI 3366 February 18, 2010

Slide 13

Molecular Dynamics — Computation

• At each time step:

– Compute forces (vibrational and rotational) on atoms caused by chemical

bonds between them. Short-range interaction, so not too much

computation here.

– Compute forces on atoms caused by their electrical charges. Potentially

must consider all pairs of atoms, so lots of computation here.

– Use forces to update atoms’ positions and velocities.

– Compute other physical properties of the system — e.g., energies.

• To reduce the computational load, can limit computation of

electrical-charge-induced forces to atoms that are “close”. To do this,

calculate for each atom a list of “neighbors”. If time steps are short, atoms

don’t move much, and we don’t have to do this every step.

Slide 14

Molecular Dynamics Pseudocode

Int const N // number of atoms

Array of Real :: atoms (3,N) //3D coordinates

Array of Real :: velocities (3,N) //velocity vector

Array of Real :: forces (3,N) //force in each dimension

Array of List :: neighbors(N) //atoms in cutoff volume

loop over time steps

vibrational_forces (N, atoms, forces)

rotational_forces (N, atoms, forces)

neighbor_list (N, atoms, neighbors)

non_bonded_forces (N, atoms, neighbors, forces)

update_atom_positions_and_velocities

(N, atoms, velocities, forces)

physical_properties ( ... Lots of stuff ... )

end loop



CSCI 3366 February 18, 2010

Slide 15

Pseudocode for Non-Bonded Force Computation

function non_bonded_forces (N, Atoms, neighbors, Forces)

Int const N // number of atoms

Array of Real :: atoms (3,N) //3D coordinates

Array of Real :: forces (3,N) //force in each dimension

Array of List :: neighbors(N) //atoms in cutoff volume

Real :: forceX, forceY, forceZ

loop [i] over atoms

loop [j] over neighbors(i)

forceX = non_bond_force(atoms(1,i), atoms(1,j))

forceY = non_bond_force(atoms(2,i), atoms(2,j))

forceZ = non_bond_force(atoms(3,i), atoms(3,j))

force(1,i) += forceX; force(1,j) -= forceX;

force(2,i) += forceY; force(2,j) -= forceY;

force(3,i) += forceZ; force(3,j) -= forceZ;

end loop [j]

end loop [i]

end function non_bonded_forces

Slide 16

Example — Heat Diffusion

• A simple example, representative of a big class of scientific-computing

applications — “heat distribution problem”.

• Goal is to simulate what happens when two ends of a pipe are put in contact

with things at different (constant) temperatures — pipe conducts heat, its

temperature changes over time, eventually converging on a smooth gradient.

• Can model mathematically how temperature in pipe changes over time using

partial differential equations.

• Can approximate solution by “discretizing” — spatially and with regard to time.



CSCI 3366 February 18, 2010

Slide 17

Heat Diffusion Code

double *uk = malloc(sizeof(double) * NX);

double *ukp1 = malloc(sizeof(double) * NX);

double *temp;

double dx = 1.0/NX; double dt = 0.5*dx*dx;

double maxdiff, diff;

initialize(uk, ukp1);

for (int k = 0; (k < NSTEPS) && (maxdiff >= threshold); ++k) {

/* compute new values */

for (int i = 1; i < NX-1; ++i) {

ukp1[i]=uk[i]+ (dt/(dx*dx))*(uk[i+1]-2*uk[i]+uk[i-1]);

}

/* check for convergence */

maxdiff = 0.0;

for (int i = 1; i < NX-1; ++i) {

diff = fabs(uk[i] - ukp1[i]);

if (diff > maxdiff) maxdiff = diff;

}

/* "copy" ukp1 to uk by swapping pointers */

temp = ukp1; ukp1 = uk; uk = temp;

printValues(uk, k);

}

Slide 18

Minute Essay

• What has been most interesting about Homework 1? most difficult?


