
CSCI 3366 March 11, 2010

Slide 1

Administrivia

• Homework 1 grades and comments mailed.

• Reminder: Homework 2 due Tuesday after spring break. (A bit more about

the assignment in the next slide.)

• Preview of coming attractions(?): The past few lectures have been a little

short on details and code. There will be more code starting today. Two more

homeworks, and the project.

• (Review minute essay from last time.)

Slide 2

Homework 2 Goals

• Write your own thread-safe PRNG. For this course the thread-safety aspects

are more important than implementing the best possible RNG algorithm.

• Fix problems with your Homework 1 code. This includes expected problems

discussed in class (poor performance related to thread-safety issues, and

poor results related to duplicating work by using the same seed in all UEs)

and problems specific to your code (as mentioned in my grading comments).

• Do a more systematic job of measuring program performance.

• The overall idea here is to produce a polished version of something for which

Homework 1 was a rough draft. And on that note . . .



CSCI 3366 March 11, 2010

Slide 3

Homework 1 — General Comments

• Some of you turned in nice clean code that correctly applied to this problem

what I hoped you learned from the numerical integration example. Others . . .

• Problems with conceptual understanding are not unheard-of, and I hope are

fixable, maybe with some outside-class help.

• But there are other problems that while trivial in some ways seem to imply a

lack of attention to detail . . .

Slide 4

Homework 1 — A Rant

• Cutting and pasting code from starter code and/or examples is fine, even

encouraged. But then look at what you copied and make needed changes!

That includes the comments, and also any messages produced by

error-checking code. (Most irritating example of this — adding a

command-line argument and changing the error-checking code but not the

error message, so even if the user follows the instructions in the message the

program still complains!)

• Creativity is generally a good thing — but please apply yours in some way

that doesn’t involve gratuitous changes to user interface, so I have some hope

of being able to automate parts of the grading process.

• “Debug print” messages can be extremely helpful in diagnosing problems.

Leaving them in final code is less helpful.



CSCI 3366 March 11, 2010

Slide 5

Compiler Warnings — A Helpful(?) Hint

• gcc (which is what mpicc is, under the hood) has several optional flags

that produce extra warnings. Use them, and pay attention to any warnings.

There are warnings you can reasonably ignore (e.g., ones coming from library

code), but most indicate problems you should fix.

Slide 6

Review — Organization of Our Pattern Language

• Four “design spaces” corresponding to phases in design:

– Finding Concurrency patterns — how to decompose problems, analyze

decomposition.

– Algorithm Structure patterns — high-level program structures.

– Supporting Structure patterns — program structures (e.g., SPMD,

fork/join), data structures (e.g., shared queue).

– Implementation Mechanisms — no patterns, but generic discussion of

“building blocks” provided by programming environments.



CSCI 3366 March 11, 2010

Slide 7

Supporting Structures Design Space

• Key idea here — represent (and talk about in general terms) two classes of

commonly-used things:

– Program structures — e.g., SPMD (think “like MPI programs”).

– Frequently-used data structures — e.g., shared queue.

Slide 8

Forces

• Part of the “design pattern” idea is that a good pattern represents a good

trade-off between “forces” pulling in different directions.

• For the patterns in this chapter, common set of forces:

– Clarity of abstraction — is structure clear from code?

– Scalability — does program “scale” well to large numbers of PEs

(processing elements)?

– Efficiency — does it make good use of resources?

– Maintainability — can humans understand it?

– Environmental affinity — does it work well in the likely target

environment(s)?

– Sequential equivalence — same results no matter how many processes?



CSCI 3366 March 11, 2010

Slide 9

Program Structure Patterns

• We identified four basic ways parallel programs can be structured:

– SPMD (Single Program, Multiple Data).

– Master/Worker.

– Loop Parallelism.

– Fork/Join.

If we chose the names well, you should be able to make some guesses about

what the patterns represent just from the names. (Maybe not for all of these.)

Slide 10

SPMD — Context/Forces

• Often makes sense, especially for large-scale parallelism, to have all UEs

doing more or less the same thing, each on a different part of the overall data;

easier to manage complexity this way too.

→ “Single Program, Multiple Data” paradigm. Good fit, too, with hardware for

large-scale parallelism.

• But typically they don’t all do exactly the same thing, so you need some way

to have different UEs do slightly different things.



CSCI 3366 March 11, 2010

Slide 11

SPMD — Solution Elements

• All UEs execute the same (source) code: Initialize, obtain unique ID, compute,

finalize.

• Based on ID, different UEs can do different things. (Typically the differences

are modest — e.g., only one process prints results — but in the extreme, you

get “MPMD” effect.)

• Typically, problem data includes:

– Data structures shared by all UEs. If no shared memory, must replicate,

possibly recombine at end.

– Data structures logically distributed among UEs. Idea is to partition data in

a way that matches how the computation is partitioned.

Slide 12

SPMD — Examples and Uses

• Very, very common, especially for MPI programs. Particularly good for Task

Parallelism and Geometric Decomposition problems.

• Example — numerical integration:

– Logical choice for MPI. One choice we could make, though, is how to

partition data (loop iterations) among UEs — by blocks, or cyclically? Only

one “shared” variable — sum being computed. Notice that in effect we

replicate the variable, and recombine at the end.

– Can do something in similar in OpenMP (another version of example).



CSCI 3366 March 11, 2010

Slide 13

Loop Parallelism — Context/Forces

• Programs in traditional application areas for parallel programming — science

and engineering — mostly loop-based. Optimizing loops has a long history —

first vectorizing, then parallelizing.

• Particularly appealing approach when a sequential program already exists,

and you want to convert (“parallelize”) it. Sometimes conversion can be done

one loop at a time — easier to develop/test/debug.

Slide 14

Loop Parallelism — Solution Elements

• Find computationally intensive loops. (No point, for example, in spending a lot

of time parallelizing initialization code.)

• Eliminate loop-carried dependencies (e.g., replicating variables so each UE

has a copy).

• Parallelize loops — arrange for iterations to be distributed among UEs.

• Optimize loop “schedule” (how iterations are mapped to UEs).



CSCI 3366 March 11, 2010

Slide 15

Loop Parallelism — Examples and Uses

• Probably the second most common, especially for OpenMP programs.

Particularly good for Task Parallelism and Geometric Decomposition

problems.

• Example — numerical integration in OpenMP (earlier version).

Slide 16

Master/Worker — Context/Forces

• For applications where it’s easy to tell how to split up the computational load

to get “good load balance”, previous two patterns usually work well.

• But for some applications, it’s not so obvious how to do this — maybe not

really possible, if work per task varies a lot and is not predictable, or if target

platform includes PEs with different capabilities.



CSCI 3366 March 11, 2010

Slide 17

Master/Worker — Solution Elements

• Basic idea — one or more workers that execute tasks, master that manages

things.

• “Bag of tasks” represents tasks yet to be done. Typically created by master

process; often implemented as shared queue. Workers can pull elements

from it directly, or can communicate with master to get new tasks.

• Typical approach shown in Fig. 5.14.

Slide 18

Master/Worker — Solution Elements, Continued

• Several potential complications:

– All tasks may be known initially, or new ones may be generated during

computation.

– Usually computation isn’t done until all tasks are done, but sometimes can

stop early.

• Several variations/optimizations:

– Master can turn into a worker after creating tasks. (Obviously more

efficient if it has nothing to do.)

– Master can be implicit, if tasks are loop iterations and dynamic scheduling

of loop iterations is possible.

• Implementation normally involves, to some extent, one of the other patterns in

this chapter.



CSCI 3366 March 11, 2010

Slide 19

Master/Worker — Examples and Uses

• Particularly good for Task Parallelism problems with completely independent

tasks (“embarrassingly parallel”).

• Example — MPI generic master/worker program. (More next time.)

Slide 20

Fork/Join — Context/Forces

• For applications where the number of concurrent tasks is more or less

constant, and relationships among them are simple and regular, previous

patterns usually work well.

• But for some applications, tasks are created dynamically (“forked”) and later

terminated (“joined” with forking task) as program runs. Sometimes you can

still use one of the previous patterns, but sometimes not — if relationships

among tasks are recursive (e.g., Divide and Conquer ) or irregular, or if

different tasks represent different functions (i.e., you need to do two or more

different things concurrently).

• In that case, it may make more sense to create a UE for each task —

potentially expensive, but easier to understand.



CSCI 3366 March 11, 2010

Slide 21

Fork/Join — Solution Elements

• Simple approach — one task per UE. As new tasks are created, a new UE is

created for each; when the task finishes, the UE is destroyed. Typically the

UE that created the new task/UE waits for it to finish. Simple to understand,

but potentially inefficient.

• More complicated approach — pool of UEs and queue of tasks, with UEs

grabbing new tasks out of the queue as they finish their old tasks. Potentially

more efficient, but more complicated to program and understand.

Slide 22

Fork/Join — Examples and Uses

• Particularly good for Divide and Conquer and Recursive Data problems.

One-task-per-UE version is OpenMP’s standard programming model

(expressed implicitly). Also matches (pre-1.5) Java’s support for

multithreading.

(Curiously enough, though, most OpenMP programs really use the simpler

Loop Parallelism.)

• Example — mergesort. (More next time.)



CSCI 3366 March 11, 2010

Slide 23

Minute Essay

• None — sign in.

• (And have a good spring break!)


