
CSCI 3366 April 6, 2010

Slide 1

Administrivia

• Reminder: Homework 3 due Thursday. Sample solutions for previous

homeworks coming soon.

• (Review minute essay from last time.)

Slide 2

Example Application: Mandelbrot Set

• For each point c = a + bi in the complex plane, look at the sequence

z0, z1, z2, . . ., where
z0 = 0

zk+1 = zk
2 + c

• For some points, this sequence is “quasi-stable” (|zk| bounded); for others,

it’s not.

• We can get interesting pictures by discretizing and then computing, for each

point, how long it takes this sequence to “diverge”.

CSCI 3366 April 6, 2010

Slide 3

Parallelization — Understanding the Problem

• Code is a loop over points in a 2D space, where at each point we calculate

until divergence / maximum iterations and then plot the result (to something

implicitly or explicitly shared).

• Consider parallelizing for a distributed-memory environment. (Along the way,

also consider what would be different with shared memory.)

Slide 4

Parallelization — Finding Concurrency

• Task-based decomposition seems more logical. Consider calculations for one

point as a task.

• How do the tasks depend on each other? they don’t really, unless “plotting” a

result means doing something with a shared resource.

CSCI 3366 April 6, 2010

Slide 5

Parallelization — Algorithm Structure

• Many mostly-independent tasks, forming a flat set rather than a hierarchy, so

Task Parallelism seems like a good choice.

• Key design decisions are how to assign tasks to UEs, how to manage

“plotting”.

• Probably makes sense to group tasks by rows rather than individual points.

We could try a simple static distribution, but might have to do something more

complex if that doesn’t give good load balance.

• Managing plotting? in a distributed-memory environment, might make sense

to just assign that job to a process that does nothing else.

Slide 6

Parallelization — Supporting Structures

• SPMD structure probably makes sense, but with elements of Master/Worker

(a master process to manage the computation and the displays, and workers

to do the calculations).

• (For shared memory, Loop Parallelism will probably make sense, also

possibly with elements of Master/Worker.)

CSCI 3366 April 6, 2010

Slide 7

Parallelization — Code

• (Look at code, multiple versions.)

Slide 8

Minute Essay

• I have two versions of the OpenMP version of the Mandelbrot program, both

of which use an OpenMP critical directive to be sure only one thread at

a time changes the display. In one version, the critical section displays one

point; in the other, it displays a whole row. Which one do you think will be

faster, and why?

• Using schedule(static) in the OpenMP program seems to give poor

load balance? What could you use instead, to improve load balance?

CSCI 3366 April 6, 2010

Slide 9

Minute Essay Answer

• Probably the one that has fewer and larger critical sections — less overhead.

• schedule(static,N) where N is some “chunk size”, to distribute

statically, or schedule(dynamic) (possibly also with a “chunk size”).

See the OpenMP documentation for details.

