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Administrivia

• Reminder: Homework 3 code due today. (Accepted through Tuesday night

without late penalty.) Homework 4 to be on Web soon.

Slide 2

Homework 3

• Shared-memory parallelization with OpenMP should be straightforward.

(Agreed?)

• Distributed-memory parallelization with MPI is less so, especially if you split

up the board among processes (as described in Distributed Array ). I say you

will learn more by doing it that way.

Questions include how you initialize the board (from a file, using random

sequence), how you print it, and what kinds of experiments will show whether

the parallelization speeds up the calculations.
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Example Application: Mandelbrot Set

• (Review code, minute essay, etc. Questions?)
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Example Application: Mergesort

• Recall(?) from earlier classes — mergesort as a (recursive)

divide-and-conquer algorithm.

• Sequential code is relatively straightforward(?).
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Parallelization — Finding Concurrency

• Task-based decomposition seems more logical, with each recursive call to

sort function as a task.

• How do the tasks depend on each other? every time we split the problem, we

create two tasks that are independent of each other — but there is a

dependency between these tasks and the task that creates them.
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Parallelization — Algorithm Structure

• Tasks here form a recursive tree-like hierarchy, so Divide and Conquer should

seems like a good choice.

• Key design decisions are how to assign tasks to UEs, whether to really

consider each call to sort function as a separate task (probably not!) or merge

them.
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Parallelization — Supporting Structures

• Fork/Join structure probably makes sense.
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Parallelization — Code

• (Look at code.)
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Minute Essay

• Why does the parallel mergesort not “scale” well (performance doesn’t

continue to improve as the number of threads increases), and indeed in

general doesn’t seem to performn very well?
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Minute Essay Answer

• A nontrivial part of the computation — the merge operation — isn’t being

parallelized, so the full number of threads isn’t being used during all of the

program’s execution.


