
CSCI 3366 April 20, 2010

Slide 1

Administrivia

• Reminder: Homework 4 due today. Extended to Thursday by request. Okay

to parallelize using simple approach we used for merge sort — even though

this may not give good load balance. (Why?)

Slide 2

Review — Organization of Our Pattern Language

• Four “design spaces” corresponding to phases in design:

– Finding Concurrency patterns — how to decompose problems, analyze

decomposition.

– Algorithm Structure patterns — high-level program structures.

– Supporting Structure patterns — program structures (e.g., SPMD,

fork/join), data structures (e.g., shared queue).

– Implementation Mechanisms — no patterns, but generic discussion of

“building blocks” provided by programming environments.

• We’ve talked about everything but the last one . . .



CSCI 3366 April 20, 2010

Slide 3

Implementation Mechanisms Design Space

• We talked early in the semester about nuts and bolts of three specific

programming environments.

• Recap that in a more general way — as a discussion of “implementation

mechanisms”. Why do this? good review, and also background if you later

want to learn other parallel programming languages/libraries.

• Think about learning a new procedural language: You ask how to write

assignments, if/then/else, loops, etc.

• Are there there analogous “building blocks” for parallel programming? We say

there are, namely:

– UE management.

– Synchronization.

– Communication.

Slide 4

UE Management

• “UE”? In MPI we have processes. In OpenMP we have (implicit) threads. In

Java we have threads. Common theme — something that carries out

computations. Generally have several of these running concurrently. Our

generic term — “unit of execution” (UE).

• In general, what you want to know is how these are created and destroyed.

• Discuss separately for processes and threads . . .



CSCI 3366 April 20, 2010

Slide 5

Managing Threads

• Threads — typically lightweight, so creating/destroying them during

computation is reasonable (though one wouldn’t want to go overboard). What

you want to know — how are threads created? how are they destroyed?

• In OpenMP, threads are created by parallel pragma (which applies to a

“structured block”). All but master thread end and are destroyed at end of

block to which pragma applies. (Actually, implementation may reuse them for

subsequent parallel block. But it’s as if they’re created new each time.)

• In Java, threads are created by creating instances of Thread class, or

subclass. Must also invoke start. A thread terminates when its run

method ends; it’s destroyed by the garbage collector in the usual way.

Java 1.5 provides interfaces/classes that hide some of these details.

Slide 6

Managing Processes

• Processes are “heavier” than threads, so creating and destroying them during

computation isn’t done much. Again, though, what you want to know is how

they’re created, how they’re destroyed.

• In PVM (and in newest version of MPI), could explicitly “spawn” a process.

• In MPI 1.1, creating processes is external to the API. Why? Historical

reasons, basically. Processes end when the code they run terminates.

Possible for them to hang around (“orphan processes”) if code doesn’t end

cleanly.

• In Java, there’s some support for creating processes, but it’s mostly for

interfacing with underlying system. Support for distributed-memory computing

is via sockets (low-level version of message-passing, in a way) and RMI.



CSCI 3366 April 20, 2010

Slide 7

Synchronization

• “Synchronization” — very generic term, idea is to enforce constraints on order

in which things execute in different UEs. Examples:

– If one thread holds a particular lock, all other threads wanting the lock

must wait.

– A process executing a blocking “receive a message” operation must wait

until the message arrives (which implies that it’s been sent, etc.).

• Different systems/environments provide different ways of doing this — locks,

message-passing, other “synchronization mechanisms” discussed in

operating systems courses/texts (semaphores, monitors, etc.). What you

want to know, when learning a new language/library, is what it provides along

these lines. Look at categories of mostly-commonly-needed functionality . . .

Slide 8

Memory Synchronization and Fences

• Additional complication in shared-memory systems:

In the simple classical model of how things work, reads/writes to memory are

“atomic” (execute without interference from other UEs).

Reality these days is somewhat different — hardware may cache values,

compiler may do interesting optimizations, etc., etc.

• How to know when there’s a consistent view of memory all UEs share?

“Memory fence” idea — writes before the fence visible to reads after it, etc.

• Memory fences usually implicit in higher-level constructs, but you could need

to know about them if threads share variables that change during execution,

and access to the variable isn’t controlled by some sort of synchronization

(OpenMP critical section, Java synchronized block, etc.).

• More details in chapter 6, with examples . . .



CSCI 3366 April 20, 2010

Slide 9

Barriers

• Idea is much like what you might guess from the name — point that all UEs

must reach before any can proceed.

• MPI has MPI Barrier function — all processes (or all in a

“communicator” group) call it, and then the ones that arrive early wait until all

have arrived. Mostly useful in timing things.

• OpenMP has explicit barrier pragma and also inserts implicit barriers at

ends of many constructs.

• In pre-1.5 Java, if you wanted a barrier you had to construct one. Java 1.5 has

CyclicBarrier, etc.

Slide 10

Mutual Exclusion

• Idea is again what you might guess from the name, and as we’ve discussed

— only one UE at a time can have access to some “critical section” of code

(to prevent “race conditions”). Shared Data talks more about when this is

needed.

• OpenMP has critical section pragma. If more flexibility needed,

locks also available. (Idea is that before entering a critical section you obtain

the relevant lock, and then release it on exit.)



CSCI 3366 April 20, 2010

Slide 11

Mutual Exclusion, Continued

• Java has synchronized methods/blocks. Synchronization is with regard to

some particular object — and of course, if you want to ensure mutual

exclusion, all participating threads must synchronize on the same object.

(Beginners often seem to get this wrong!)

• MPI doesn’t provide explicit functions/constructs for mutual exclusion —

generally no need to manage shared resources because there aren’t any. If

needed, “roll your own” — assign all operations on shared resource to a

single process, implement some sort of token scheme, etc.

Slide 12

Communication

• In the shared-memory model, communication (sharing information) among

UEs is easy (trivial, really) but synchronization is difficult.

• In the distributed-memory model, other way around.

• Look at two basic categories of functionality . . .



CSCI 3366 April 20, 2010

Slide 13

Message Passing

• Basic ideas as discussed earlier — idea is that UEs communicate by “sending

messages”, each with a sender and a receiver and containing any desired

data.

• MPI provides explicit support through library functions, as discussed earlier.

• OpenMP doesn’t, of course — and yet in some cases it can make sense, and

it’s not hard to “fake it” by using shared variables as buffers. Examples in

book.

• Java also doesn’t explicitly support message passing, exactly, but

java.net and java.io packages provide support for communication

over sockets, and RMI allows a program running on one computer to invoke

methods on another (with parameters and return values communicated as

necessary). java.nio package may also be of interest — allows one

thread to monitor multiple connections (previously required multiple threads).

Slide 14

Collective Communication

• Basic idea as discussed earlier — communication events that involve more

than two UEs. Frequently all UEs involved. Common examples: broadcast,

barrier, reduction. (Review — reduction means repeatedly applying a binary

operator to “reduce” a set of data items to a single data item. Examples

include sum, product, max, min.)

• MPI provides explicit support through library functions, as discussed earlier.

• OpenMP also provides explicit support for some collective operations, also as

discussed earlier — barriers, reduction via reduction clause.

• Java doesn’t (as far as I know), but these operations can all be coded in terms

of point-to-point message passing.

• As an example of “roll your own” — discussion of various ways to implement

reduction.



CSCI 3366 April 20, 2010

Slide 15

Other Communication Constructs

• “One-sided” communication — two UEs communicate, but only one of them

explicitly does anything (e.g., one UE puts something into a buffer on another

node).

• Various schemes for “virtual shared memory” — “tuple space” in Linda, e.g.

Slide 16

Minute Essay

• I plan to spend the next two lectures talking about other programming

environments — POSIX threads, and sockets and RMI in Java. Other

requests?


